Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
/*
 *  linux/arch/i386/kernel/process.c
 *
 *  Copyright (C) 1995  Linus Torvalds
 */

/*
 * This file handles the architecture-dependent parts of process handling..
 */

#define __KERNEL_SYSCALLS__
#include <stdarg.h>

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/malloc.h>
#include <linux/vmalloc.h>
#include <linux/user.h>
#include <linux/a.out.h>
#include <linux/interrupt.h>
#include <linux/config.h>
#include <linux/unistd.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/reboot.h>
#include <linux/init.h>
#if defined(CONFIG_APM) && defined(CONFIG_APM_POWER_OFF)
#include <linux/apm_bios.h>
#endif

#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/ldt.h>
#include <asm/processor.h>
#include <asm/desc.h>
#ifdef CONFIG_MATH_EMULATION
#include <asm/math_emu.h>
#endif

#include "irq.h"

spinlock_t semaphore_wake_lock = SPIN_LOCK_UNLOCKED;

asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");

#ifdef CONFIG_APM
extern int  apm_do_idle(void);
extern void apm_do_busy(void);
#endif

static int hlt_counter=0;

#define HARD_IDLE_TIMEOUT (HZ / 3)

void disable_hlt(void)
{
	hlt_counter++;
}

void enable_hlt(void)
{
	hlt_counter--;
}

#ifndef __SMP__

static void hard_idle(void)
{
	while (!current->need_resched) {
		if (boot_cpu_data.hlt_works_ok && !hlt_counter) {
#ifdef CONFIG_APM
				/* If the APM BIOS is not enabled, or there
				 is an error calling the idle routine, we
				 should hlt if possible.  We need to check
				 need_resched again because an interrupt
				 may have occurred in apm_do_idle(). */
			start_bh_atomic();
			if (!apm_do_idle() && !current->need_resched)
				__asm__("hlt");
			end_bh_atomic();
#else
			__asm__("hlt");
#endif
	        }
 		if (current->need_resched) 
 			break;
		schedule();
	}
#ifdef CONFIG_APM
	apm_do_busy();
#endif
}

/*
 * The idle loop on a uniprocessor i386..
 */
 
asmlinkage int sys_idle(void)
{
        unsigned long start_idle = 0;
	int ret = -EPERM;

	lock_kernel();
	if (current->pid != 0)
		goto out;
	/* endless idle loop with no priority at all */
	current->priority = 0;
	current->counter = 0;
	for (;;) {
		/*
		 *	We are locked at this point. So we can safely call
		 *	the APM bios knowing only one CPU at a time will do
		 *	so.
		 */
		if (!start_idle) {
			check_pgt_cache();
			start_idle = jiffies;
		}
		if (jiffies - start_idle > HARD_IDLE_TIMEOUT) 
			hard_idle();
		else  {
			if (boot_cpu_data.hlt_works_ok && !hlt_counter && !current->need_resched)
		        	__asm__("hlt");
		}
		run_task_queue(&tq_scheduler);
		if (current->need_resched) 
			start_idle = 0;
		schedule();
	}
	ret = 0;
out:
	unlock_kernel();
	return ret;
}

#else

/*
 *	This is being executed in task 0 'user space'.
 */

int cpu_idle(void *unused)
{
	current->priority = 0;
	while(1)
	{
		if(current_cpu_data.hlt_works_ok &&
		 		!hlt_counter && !current->need_resched)
			__asm("hlt");
		check_pgt_cache();
		run_task_queue(&tq_scheduler);

		/* endless idle loop with no priority at all */
		current->counter = 0;
		schedule();
	}
}

asmlinkage int sys_idle(void)
{
	if (current->pid != 0)
		return -EPERM;
	cpu_idle(NULL);
	return 0;
}

#endif

/*
 * This routine reboots the machine by asking the keyboard
 * controller to pulse the reset-line low. We try that for a while,
 * and if it doesn't work, we do some other stupid things.
 */

static long no_idt[2] = {0, 0};
static int reboot_mode = 0;
static int reboot_thru_bios = 0;

__initfunc(void reboot_setup(char *str, int *ints))
{
	while(1) {
		switch (*str) {
		case 'w': /* "warm" reboot (no memory testing etc) */
			reboot_mode = 0x1234;
			break;
		case 'c': /* "cold" reboot (with memory testing etc) */
			reboot_mode = 0x0;
			break;
		case 'b': /* "bios" reboot by jumping through the BIOS */
			reboot_thru_bios = 1;
			break;
		case 'h': /* "hard" reboot by toggling RESET and/or crashing the CPU */
			reboot_thru_bios = 0;
			break;
		}
		if((str = strchr(str,',')) != NULL)
			str++;
		else
			break;
	}
}


/* The following code and data reboots the machine by switching to real
   mode and jumping to the BIOS reset entry point, as if the CPU has
   really been reset.  The previous version asked the keyboard
   controller to pulse the CPU reset line, which is more thorough, but
   doesn't work with at least one type of 486 motherboard.  It is easy
   to stop this code working; hence the copious comments. */

static unsigned long long
real_mode_gdt_entries [3] =
{
	0x0000000000000000ULL,	/* Null descriptor */
	0x00009a000000ffffULL,	/* 16-bit real-mode 64k code at 0x00000000 */
	0x000092000100ffffULL	/* 16-bit real-mode 64k data at 0x00000100 */
};

static struct
{
	unsigned short       size __attribute__ ((packed));
	unsigned long long * base __attribute__ ((packed));
}
real_mode_gdt = { sizeof (real_mode_gdt_entries) - 1, real_mode_gdt_entries },
real_mode_idt = { 0x3ff, 0 };

/* This is 16-bit protected mode code to disable paging and the cache,
   switch to real mode and jump to the BIOS reset code.

   The instruction that switches to real mode by writing to CR0 must be
   followed immediately by a far jump instruction, which set CS to a
   valid value for real mode, and flushes the prefetch queue to avoid
   running instructions that have already been decoded in protected
   mode.

   Clears all the flags except ET, especially PG (paging), PE
   (protected-mode enable) and TS (task switch for coprocessor state
   save).  Flushes the TLB after paging has been disabled.  Sets CD and
   NW, to disable the cache on a 486, and invalidates the cache.  This
   is more like the state of a 486 after reset.  I don't know if
   something else should be done for other chips.

   More could be done here to set up the registers as if a CPU reset had
   occurred; hopefully real BIOSs don't assume much. */

static unsigned char real_mode_switch [] =
{
	0x66, 0x0f, 0x20, 0xc0,			/*    movl  %cr0,%eax        */
	0x66, 0x83, 0xe0, 0x11,			/*    andl  $0x00000011,%eax */
	0x66, 0x0d, 0x00, 0x00, 0x00, 0x60,	/*    orl   $0x60000000,%eax */
	0x66, 0x0f, 0x22, 0xc0,			/*    movl  %eax,%cr0        */
	0x66, 0x0f, 0x22, 0xd8,			/*    movl  %eax,%cr3        */
	0x66, 0x0f, 0x20, 0xc3,			/*    movl  %cr0,%ebx        */
	0x66, 0x81, 0xe3, 0x00, 0x00, 0x00, 0x60,	/*    andl  $0x60000000,%ebx */
	0x74, 0x02,				/*    jz    f                */
	0x0f, 0x08,				/*    invd                   */
	0x24, 0x10,				/* f: andb  $0x10,al         */
	0x66, 0x0f, 0x22, 0xc0,			/*    movl  %eax,%cr0        */
	0xea, 0x00, 0x00, 0xff, 0xff		/*    ljmp  $0xffff,$0x0000  */
};

static inline void kb_wait(void)
{
	int i;

	for (i=0; i<0x10000; i++)
		if ((inb_p(0x64) & 0x02) == 0)
			break;
}

void machine_restart(char * __unused)
{
#if __SMP__
	/*
	 * turn off the IO-APIC, so we can do a clean reboot
	 */
	init_pic_mode();
#endif

	if(!reboot_thru_bios) {
		/* rebooting needs to touch the page at absolute addr 0 */
		*((unsigned short *)__va(0x472)) = reboot_mode;
		for (;;) {
			int i;
			for (i=0; i<100; i++) {
				kb_wait();
				udelay(50);
				outb(0xfe,0x64);         /* pulse reset low */
				udelay(50);
			}
			/* That didn't work - force a triple fault.. */
			__asm__ __volatile__("lidt %0": :"m" (no_idt));
			__asm__ __volatile__("int3");
		}
	}

	cli();

	/* Write zero to CMOS register number 0x0f, which the BIOS POST
	   routine will recognize as telling it to do a proper reboot.  (Well
	   that's what this book in front of me says -- it may only apply to
	   the Phoenix BIOS though, it's not clear).  At the same time,
	   disable NMIs by setting the top bit in the CMOS address register,
	   as we're about to do peculiar things to the CPU.  I'm not sure if
	   `outb_p' is needed instead of just `outb'.  Use it to be on the
	   safe side. */

	outb_p (0x8f, 0x70);
	outb_p (0x00, 0x71);

	/* Remap the kernel at virtual address zero, as well as offset zero
	   from the kernel segment.  This assumes the kernel segment starts at
	   virtual address PAGE_OFFSET. */

	memcpy (swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
		sizeof (swapper_pg_dir [0]) * KERNEL_PGD_PTRS);

	/* Make sure the first page is mapped to the start of physical memory.
	   It is normally not mapped, to trap kernel NULL pointer dereferences. */

	pg0[0] = 7;

	/*
	 * Use `swapper_pg_dir' as our page directory.  We bother with
	 * `SET_PAGE_DIR' because although might be rebooting, but if we change
	 * the way we set root page dir in the future, then we wont break a
	 * seldom used feature ;)
	 */

	SET_PAGE_DIR(current,swapper_pg_dir);

	/* Write 0x1234 to absolute memory location 0x472.  The BIOS reads
	   this on booting to tell it to "Bypass memory test (also warm
	   boot)".  This seems like a fairly standard thing that gets set by
	   REBOOT.COM programs, and the previous reset routine did this
	   too. */

	*((unsigned short *)0x472) = reboot_mode;

	/* For the switch to real mode, copy some code to low memory.  It has
	   to be in the first 64k because it is running in 16-bit mode, and it
	   has to have the same physical and virtual address, because it turns
	   off paging.  Copy it near the end of the first page, out of the way
	   of BIOS variables. */

	memcpy ((void *) (0x1000 - sizeof (real_mode_switch)),
		real_mode_switch, sizeof (real_mode_switch));

	/* Set up the IDT for real mode. */

	__asm__ __volatile__ ("lidt %0" : : "m" (real_mode_idt));

	/* Set up a GDT from which we can load segment descriptors for real
	   mode.  The GDT is not used in real mode; it is just needed here to
	   prepare the descriptors. */

	__asm__ __volatile__ ("lgdt %0" : : "m" (real_mode_gdt));

	/* Load the data segment registers, and thus the descriptors ready for
	   real mode.  The base address of each segment is 0x100, 16 times the
	   selector value being loaded here.  This is so that the segment
	   registers don't have to be reloaded after switching to real mode:
	   the values are consistent for real mode operation already. */

	__asm__ __volatile__ ("movl $0x0010,%%eax\n"
				"\tmovl %%ax,%%ds\n"
				"\tmovl %%ax,%%es\n"
				"\tmovl %%ax,%%fs\n"
				"\tmovl %%ax,%%gs\n"
				"\tmovl %%ax,%%ss" : : : "eax");

	/* Jump to the 16-bit code that we copied earlier.  It disables paging
	   and the cache, switches to real mode, and jumps to the BIOS reset
	   entry point. */

	__asm__ __volatile__ ("ljmp $0x0008,%0"
				:
				: "i" ((void *) (0x1000 - sizeof (real_mode_switch))));
}

void machine_halt(void)
{
}

void machine_power_off(void)
{
#if defined(CONFIG_APM) && defined(CONFIG_APM_POWER_OFF)
	apm_power_off();
#endif
}


void show_regs(struct pt_regs * regs)
{
	long cr0 = 0L, cr2 = 0L, cr3 = 0L;

	printk("\n");
	printk("EIP: %04x:[<%08lx>]",0xffff & regs->xcs,regs->eip);
	if (regs->xcs & 3)
		printk(" ESP: %04x:%08lx",0xffff & regs->xss,regs->esp);
	printk(" EFLAGS: %08lx\n",regs->eflags);
	printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
		regs->eax,regs->ebx,regs->ecx,regs->edx);
	printk("ESI: %08lx EDI: %08lx EBP: %08lx",
		regs->esi, regs->edi, regs->ebp);
	printk(" DS: %04x ES: %04x\n",
		0xffff & regs->xds,0xffff & regs->xes);
	__asm__("movl %%cr0, %0": "=r" (cr0));
	__asm__("movl %%cr2, %0": "=r" (cr2));
	__asm__("movl %%cr3, %0": "=r" (cr3));
	printk("CR0: %08lx CR2: %08lx CR3: %08lx\n", cr0, cr2, cr3);
}

/*
 * Allocation and freeing of basic task resources.
 *
 * NOTE! The task struct and the stack go together
 *
 * The task structure is a two-page thing, and as such
 * not reliable to allocate using the basic page alloc
 * functions. We have a small cache of structures for
 * when the allocations fail..
 *
 * This extra buffer essentially acts to make for less
 * "jitter" in the allocations..
 *
 * On SMP we don't do this right now because:
 *  - we aren't holding any locks when called, and we might
 *    as well just depend on the generic memory management
 *    to do proper locking for us instead of complicating it
 *    here.
 *  - if you use SMP you have a beefy enough machine that
 *    this shouldn't matter..
 */
#ifndef __SMP__
#define EXTRA_TASK_STRUCT	16
static struct task_struct * task_struct_stack[EXTRA_TASK_STRUCT];
static int task_struct_stack_ptr = -1;
#endif

struct task_struct * alloc_task_struct(void)
{
#ifndef EXTRA_TASK_STRUCT
	return (struct task_struct *) __get_free_pages(GFP_KERNEL,1);
#else
	int index;
	struct task_struct *ret;

	index = task_struct_stack_ptr;
	if (index >= EXTRA_TASK_STRUCT/2)
		goto use_cache;
	ret = (struct task_struct *) __get_free_pages(GFP_KERNEL,1);
	if (!ret) {
		index = task_struct_stack_ptr;
		if (index >= 0) {
use_cache:
			ret = task_struct_stack[index];
			task_struct_stack_ptr = index-1;
		}
	}
	return ret;
#endif
}

void free_task_struct(struct task_struct *p)
{
#ifdef EXTRA_TASK_STRUCT
	int index = task_struct_stack_ptr+1;

	if (index < EXTRA_TASK_STRUCT) {
		task_struct_stack[index] = p;
		task_struct_stack_ptr = index;
	} else
#endif
		free_pages((unsigned long) p, 1);
}

void release_segments(struct mm_struct *mm)
{
	/* forget local segments */
	__asm__ __volatile__("movl %w0,%%fs ; movl %w0,%%gs"
		: /* no outputs */
		: "r" (0));
	if (mm->segments) {
		void * ldt = mm->segments;

		/*
		 * Get the LDT entry from init_task.
		 */
		current->tss.ldt = _LDT(0);
		load_ldt(0);

		mm->segments = NULL;
		vfree(ldt);
	}
}

/*
 * Create a kernel thread
 */
pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
{
	long retval;

	__asm__ __volatile__(
		"movl %%esp,%%esi\n\t"
		"int $0x80\n\t"		/* Linux/i386 system call */
		"cmpl %%esp,%%esi\n\t"	/* child or parent? */
		"je 1f\n\t"		/* parent - jump */
		"pushl %3\n\t"		/* push argument */
		"call *%4\n\t"		/* call fn */
		"movl %2,%0\n\t"	/* exit */
		"int $0x80\n"
		"1:\t"
		:"=a" (retval)
		:"0" (__NR_clone), "i" (__NR_exit),
		 "r" (arg), "r" (fn),
		 "b" (flags | CLONE_VM)
		:"si");
	return retval;
}

/*
 * Free current thread data structures etc..
 */
void exit_thread(void)
{
	/* nothing to do ... */
}

void flush_thread(void)
{
	int i;
	struct task_struct *tsk = current;

	for (i=0 ; i<8 ; i++)
		tsk->tss.debugreg[i] = 0;

	/*
	 * Forget coprocessor state..
	 */
	clear_fpu(tsk);
	tsk->used_math = 0;
}

void release_thread(struct task_struct *dead_task)
{
}

/*
 * If new_mm is NULL, we're being called to set up the LDT descriptor
 * for a clone task. Each clone must have a separate entry in the GDT.
 */
void copy_segments(int nr, struct task_struct *p, struct mm_struct *new_mm)
{
	struct mm_struct * old_mm = current->mm;
	void * old_ldt = old_mm->segments, * ldt = old_ldt;

	/* default LDT - use the one from init_task */
	p->tss.ldt = _LDT(0);
	if (old_ldt) {
		if (new_mm) {
			ldt = vmalloc(LDT_ENTRIES*LDT_ENTRY_SIZE);
			new_mm->segments = ldt;
			if (!ldt) {
				printk(KERN_WARNING "ldt allocation failed\n");
				return;
			}
			memcpy(ldt, old_ldt, LDT_ENTRIES*LDT_ENTRY_SIZE);
		}
		p->tss.ldt = _LDT(nr);
		set_ldt_desc(nr, ldt, LDT_ENTRIES);
		return;
	}
}

/*
 * Save a segment.
 */
#define savesegment(seg,value) \
	asm volatile("movl %%" #seg ",%0":"=m" (*(int *)&(value)))

int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,
	struct task_struct * p, struct pt_regs * regs)
{
	struct pt_regs * childregs;

	childregs = ((struct pt_regs *) (2*PAGE_SIZE + (unsigned long) p)) - 1;
	*childregs = *regs;
	childregs->eax = 0;
	childregs->esp = esp;
	childregs->eflags = regs->eflags & 0xffffcfff;  /* iopl always 0 for a new process */	

	p->tss.esp = (unsigned long) childregs;
	p->tss.esp0 = (unsigned long) (childregs+1);
	p->tss.ss0 = __KERNEL_DS;

	p->tss.tr = _TSS(nr);
	set_tss_desc(nr,&(p->tss));
	p->tss.eip = (unsigned long) ret_from_fork;

	savesegment(fs,p->tss.fs);
	savesegment(gs,p->tss.gs);

	/*
	 * a bitmap offset pointing outside of the TSS limit causes a nicely
	 * controllable SIGSEGV. The first sys_ioperm() call sets up the
	 * bitmap properly.
	 */
	p->tss.bitmap = sizeof(struct thread_struct);

	unlazy_fpu(current);
	p->tss.i387 = current->tss.i387;

	return 0;
}

/*
 * fill in the FPU structure for a core dump.
 */
int dump_fpu (struct pt_regs * regs, struct user_i387_struct* fpu)
{
	int fpvalid;
	struct task_struct *tsk = current;

	fpvalid = tsk->used_math;
	if (fpvalid) {
		unlazy_fpu(tsk);
		memcpy(fpu,&tsk->tss.i387.hard,sizeof(*fpu));
	}

	return fpvalid;
}

/*
 * fill in the user structure for a core dump..
 */
void dump_thread(struct pt_regs * regs, struct user * dump)
{
	int i;

/* changed the size calculations - should hopefully work better. lbt */
	dump->magic = CMAGIC;
	dump->start_code = 0;
	dump->start_stack = regs->esp & ~(PAGE_SIZE - 1);
	dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT;
	dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))) >> PAGE_SHIFT;
	dump->u_dsize -= dump->u_tsize;
	dump->u_ssize = 0;
	for (i = 0; i < 8; i++)
		dump->u_debugreg[i] = current->tss.debugreg[i];  

	if (dump->start_stack < TASK_SIZE)
		dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT;

	dump->regs.ebx = regs->ebx;
	dump->regs.ecx = regs->ecx;
	dump->regs.edx = regs->edx;
	dump->regs.esi = regs->esi;
	dump->regs.edi = regs->edi;
	dump->regs.ebp = regs->ebp;
	dump->regs.eax = regs->eax;
	dump->regs.ds = regs->xds;
	dump->regs.es = regs->xes;
	savesegment(fs,dump->regs.fs);
	savesegment(gs,dump->regs.gs);
	dump->regs.orig_eax = regs->orig_eax;
	dump->regs.eip = regs->eip;
	dump->regs.cs = regs->xcs;
	dump->regs.eflags = regs->eflags;
	dump->regs.esp = regs->esp;
	dump->regs.ss = regs->xss;

	dump->u_fpvalid = dump_fpu (regs, &dump->i387);
}

/*
 * This special macro can be used to load a debugging register
 */
#define loaddebug(tsk,register) \
		__asm__("movl %0,%%db" #register  \
			: /* no output */ \
			:"r" (tsk->tss.debugreg[register]))


/*
 *	switch_to(x,yn) should switch tasks from x to y.
 *
 * We fsave/fwait so that an exception goes off at the right time
 * (as a call from the fsave or fwait in effect) rather than to
 * the wrong process. Lazy FP saving no longer makes any sense
 * with modern CPU's, and this simplifies a lot of things (SMP
 * and UP become the same).
 *
 * NOTE! We used to use the x86 hardware context switching. The
 * reason for not using it any more becomes apparent when you
 * try to recover gracefully from saved state that is no longer
 * valid (stale segment register values in particular). With the
 * hardware task-switch, there is no way to fix up bad state in
 * a reasonable manner.
 *
 * The fact that Intel documents the hardware task-switching to
 * be slow is a fairly red herring - this code is not noticeably
 * faster. However, there _is_ some room for improvement here,
 * so the performance issues may eventually be a valid point.
 * More important, however, is the fact that this allows us much
 * more flexibility.
 */
void __switch_to(struct task_struct *prev, struct task_struct *next)
{
	/* Do the FPU save and set TS if it wasn't set before.. */
	unlazy_fpu(prev);

	/*
	 * Reload TR, LDT and the page table pointers..
	 *
	 * We need TR for the IO permission bitmask (and
	 * the vm86 bitmasks in case we ever use enhanced
	 * v86 mode properly).
	 *
	 * We may want to get rid of the TR register some
	 * day, and copy the bitmaps around by hand. Oh,
	 * well. In the meantime we have to clear the busy
	 * bit in the TSS entry, ugh.
	 */
	gdt_table[next->tss.tr >> 3].b &= 0xfffffdff;
	asm volatile("ltr %0": :"g" (*(unsigned short *)&next->tss.tr));

	/*
	 * Save away %fs and %gs. No need to save %es and %ds, as
	 * those are always kernel segments while inside the kernel.
	 */
	asm volatile("movl %%fs,%0":"=m" (*(int *)&prev->tss.fs));
	asm volatile("movl %%gs,%0":"=m" (*(int *)&prev->tss.gs));

	/* Re-load LDT if necessary */
	if (next->mm->segments != prev->mm->segments)
		asm volatile("lldt %0": :"g" (*(unsigned short *)&next->tss.ldt));

	/* Re-load page tables */
	{
		unsigned long new_cr3 = next->tss.cr3;
		if (new_cr3 != prev->tss.cr3) 
			asm volatile("movl %0,%%cr3": :"r" (new_cr3));
	}

	/*
	 * Restore %fs and %gs.
	 */
	loadsegment(fs,next->tss.fs);
	loadsegment(gs,next->tss.gs);

	/*
	 * Now maybe reload the debug registers
	 */
	if (next->tss.debugreg[7]){
		loaddebug(next,0);
		loaddebug(next,1);
		loaddebug(next,2);
		loaddebug(next,3);
		loaddebug(next,6);
		loaddebug(next,7);
	}
}

asmlinkage int sys_fork(struct pt_regs regs)
{
	return do_fork(SIGCHLD, regs.esp, &regs);
}

asmlinkage int sys_clone(struct pt_regs regs)
{
	unsigned long clone_flags;
	unsigned long newsp;

	clone_flags = regs.ebx;
	newsp = regs.ecx;
	if (!newsp)
		newsp = regs.esp;
	return do_fork(clone_flags, newsp, &regs);
}

/*
 * sys_execve() executes a new program.
 */
asmlinkage int sys_execve(struct pt_regs regs)
{
	int error;
	char * filename;

	lock_kernel();
	filename = getname((char *) regs.ebx);
	error = PTR_ERR(filename);
	if (IS_ERR(filename))
		goto out;
	error = do_execve(filename, (char **) regs.ecx, (char **) regs.edx, &regs);
	if (error == 0)
		current->flags &= ~PF_DTRACE;
	putname(filename);
out:
	unlock_kernel();
	return error;
}