Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
/*
 *  linux/arch/i386/kernel/process.c
 *
 *  Copyright (C) 1995  Linus Torvalds
 */

/*
 * This file handles the architecture-dependent parts of process handling..
 */

#define __KERNEL_SYSCALLS__
#include <stdarg.h>

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/malloc.h>
#include <linux/ldt.h>
#include <linux/user.h>
#include <linux/a.out.h>
#include <linux/interrupt.h>
#include <linux/config.h>
#include <linux/unistd.h>
#include <linux/delay.h>

#include <asm/segment.h>
#include <asm/pgtable.h>
#include <asm/system.h>
#include <asm/io.h>
#include <linux/smp.h>

asmlinkage void ret_from_sys_call(void) __asm__("ret_from_sys_call");

#ifdef CONFIG_APM
extern int  apm_do_idle(void);
extern void apm_do_busy(void);
#endif

static int hlt_counter=0;

#define HARD_IDLE_TIMEOUT (HZ / 3)

void disable_hlt(void)
{
	hlt_counter++;
}

void enable_hlt(void)
{
	hlt_counter--;
}

#ifndef __SMP__

static void hard_idle(void)
{
	while (!need_resched) {
		if (hlt_works_ok && !hlt_counter) {
#ifdef CONFIG_APM
				/* If the APM BIOS is not enabled, or there
				 is an error calling the idle routine, we
				 should hlt if possible.  We need to check
				 need_resched again because an interrupt
				 may have occurred in apm_do_idle(). */
			start_bh_atomic();
			if (!apm_do_idle() && !need_resched)
				__asm__("hlt");
			end_bh_atomic();
#else
			__asm__("hlt");
#endif
	        }
 		if (need_resched) 
 			break;
		schedule();
	}
#ifdef CONFIG_APM
	apm_do_busy();
#endif
}

/*
 * The idle loop on a uniprocessor i386..
 */
 
asmlinkage int sys_idle(void)
{
        unsigned long start_idle = 0;

	if (current->pid != 0)
		return -EPERM;
	/* endless idle loop with no priority at all */
	current->counter = -100;
	for (;;) 
	{
		/*
		 *	We are locked at this point. So we can safely call
		 *	the APM bios knowing only one CPU at a time will do
		 *	so.
		 */
		if (!start_idle) 
			start_idle = jiffies;
		if (jiffies - start_idle > HARD_IDLE_TIMEOUT) 
		{
			hard_idle();
		} 
		else 
		{
			if (hlt_works_ok && !hlt_counter && !need_resched)
		        	__asm__("hlt");
		}
		if (need_resched) 
			start_idle = 0;
		schedule();
	}
}

#else

/*
 *	In the SMP world we hlt outside of kernel syscall rather than within
 *	so as to get the right locking semantics.
 */
 
asmlinkage int sys_idle(void)
{
	if(current->pid != 0)
		return -EPERM;
#ifdef __SMP_PROF__
	smp_spins_sys_idle[smp_processor_id()]+=
	  smp_spins_syscall_cur[smp_processor_id()];
#endif
	current->counter= -100;
	schedule();
	return 0;
}

/*
 *	This is being executed in task 0 'user space'.
 */

int cpu_idle(void *unused)
{
	while(1)
	{
		if(cpu_data[smp_processor_id()].hlt_works_ok && !hlt_counter && !need_resched)
			__asm("hlt");
                if(0==(0x7fffffff & smp_process_available)) 
                	continue;
                while(0x80000000 & smp_process_available);
	        cli();
                while(set_bit(31,&smp_process_available))
                	while(test_bit(31,&smp_process_available))
                {
                	/*
                	 *	Oops.. This is kind of important in some cases...
                	 */
                	if(clear_bit(smp_processor_id(), &smp_invalidate_needed))
                		local_flush_tlb();
                }
                if (0==(0x7fffffff & smp_process_available)){
                        clear_bit(31,&smp_process_available);
                        sti();
                        continue;
                }
                smp_process_available--;
                clear_bit(31,&smp_process_available);
                sti();
		idle();
	}
}

#endif

/*
 * This routine reboots the machine by asking the keyboard
 * controller to pulse the reset-line low. We try that for a while,
 * and if it doesn't work, we do some other stupid things.
 */
static long no_idt[2] = {0, 0};
static int reboot_mode = 0;
static int reboot_thru_bios = 0;

void reboot_setup(char *str, int *ints)
{
	while(1) {
		switch (*str) {
		case 'w': /* "warm" reboot (no memory testing etc) */
			reboot_mode = 0x1234;
			break;
		case 'c': /* "cold" reboot (with memory testing etc) */
			reboot_mode = 0x0;
			break;
		case 'b': /* "bios" reboot by jumping through the BIOS */
			reboot_thru_bios = 1;
			break;
		case 'h': /* "hard" reboot by toggling RESET and/or crashing the CPU */
			reboot_thru_bios = 0;
			break;
		}
		if((str = strchr(str,',')) != NULL)
			str++;
		else
			break;
	}
}


/* The following code and data reboots the machine by switching to real
   mode and jumping to the BIOS reset entry point, as if the CPU has
   really been reset.  The previous version asked the keyboard
   controller to pulse the CPU reset line, which is more thorough, but
   doesn't work with at least one type of 486 motherboard.  It is easy
   to stop this code working; hence the copious comments. */

unsigned long long
real_mode_gdt_entries [3] =
{
	0x0000000000000000ULL,	/* Null descriptor */
	0x00009a000000ffffULL,	/* 16-bit real-mode 64k code at 0x00000000 */
	0x000092000100ffffULL		/* 16-bit real-mode 64k data at 0x00000100 */
};

struct
{
	unsigned short       size __attribute__ ((packed));
	unsigned long long * base __attribute__ ((packed));
}
real_mode_gdt = { sizeof (real_mode_gdt_entries) - 1, real_mode_gdt_entries },
real_mode_idt = { 0x3ff, 0 };

/* This is 16-bit protected mode code to disable paging and the cache,
   switch to real mode and jump to the BIOS reset code.

   The instruction that switches to real mode by writing to CR0 must be
   followed immediately by a far jump instruction, which set CS to a
   valid value for real mode, and flushes the prefetch queue to avoid
   running instructions that have already been decoded in protected
   mode.

   Clears all the flags except ET, especially PG (paging), PE
   (protected-mode enable) and TS (task switch for coprocessor state
   save).  Flushes the TLB after paging has been disabled.  Sets CD and
   NW, to disable the cache on a 486, and invalidates the cache.  This
   is more like the state of a 486 after reset.  I don't know if
   something else should be done for other chips.

   More could be done here to set up the registers as if a CPU reset had
   occurred; hopefully real BIOSes don't assume much. */

unsigned char real_mode_switch [] =
{
	0x66, 0x0f, 0x20, 0xc0,			/*    movl  %cr0,%eax        */
	0x66, 0x83, 0xe0, 0x11,			/*    andl  $0x00000011,%eax */
	0x66, 0x0d, 0x00, 0x00, 0x00, 0x60,		/*    orl   $0x60000000,%eax */
	0x66, 0x0f, 0x22, 0xc0,			/*    movl  %eax,%cr0        */
	0x66, 0x0f, 0x22, 0xd8,			/*    movl  %eax,%cr3        */
	0x66, 0x0f, 0x20, 0xc3,			/*    movl  %cr0,%ebx        */
	0x66, 0x81, 0xe3, 0x00, 0x00, 0x00, 0x60,	/*    andl  $0x60000000,%ebx */
	0x74, 0x02,					/*    jz    f                */
	0x0f, 0x08,					/*    invd                   */
	0x24, 0x10,					/* f: andb  $0x10,al         */
	0x66, 0x0f, 0x22, 0xc0,			/*    movl  %eax,%cr0        */
	0xea, 0x00, 0x00, 0xff, 0xff			/*    ljmp  $0xffff,$0x0000  */
};

static inline void kb_wait(void)
{
	int i;
	for (i=0; i<0x10000; i++)
		if ((inb_p(0x64) & 0x02) == 0)
			break;
}

void hard_reset_now (void)
{

	if(!reboot_thru_bios) {
		sti();
		/* rebooting needs to touch the page at absolute addr 0 */
		pg0[0] = 7;
		*((unsigned short *)0x472) = reboot_mode;
		for (;;) {
			int i;
			for (i=0; i<100; i++) {
				int j;
				kb_wait();
				for(j = 0; j < 100000 ; j++)
					/* nothing */;
				outb(0xfe,0x64);         /* pulse reset low */
				udelay(10);
			}
			__asm__ __volatile__("\tlidt %0": "=m" (no_idt));
		}
	}

	cli ();

	/* Write zero to CMOS register number 0x0f, which the BIOS POST
	   routine will recognize as telling it to do a proper reboot.  (Well
	   that's what this book in front of me says -- it may only apply to
	   the Phoenix BIOS though, it's not clear).  At the same time,
	   disable NMIs by setting the top bit in the CMOS address register,
	   as we're about to do peculiar things to the CPU.  I'm not sure if
	   `outb_p' is needed instead of just `outb'.  Use it to be on the
	   safe side. */

	outb_p (0x8f, 0x70);
	outb_p (0x00, 0x71);

	/* Remap the kernel at virtual address zero, as well as offset zero
	   from the kernel segment.  This assumes the kernel segment starts at
	   virtual address 0xc0000000. */

	memcpy (swapper_pg_dir, swapper_pg_dir + 768,
		sizeof (swapper_pg_dir [0]) * 256);

	/* Make sure the first page is mapped to the start of physical memory.
	   It is normally not mapped, to trap kernel NULL pointer dereferences. */

	pg0 [0] = 7;

	/* Use `swapper_pg_dir' as our page directory.  Don't bother with
	   `SET_PAGE_DIR' because interrupts are disabled and we're rebooting.
	   This instruction flushes the TLB. */

	__asm__ __volatile__ ("movl %0,%%cr3" : : "a" (swapper_pg_dir) : "memory");

	/* Write 0x1234 to absolute memory location 0x472.  The BIOS reads
	   this on booting to tell it to "Bypass memory test (also warm
	   boot)".  This seems like a fairly standard thing that gets set by
	   REBOOT.COM programs, and the previous reset routine did this
	   too. */

	*((unsigned short *)0x472) = reboot_mode;

	/* For the switch to real mode, copy some code to low memory.  It has
	   to be in the first 64k because it is running in 16-bit mode, and it
	   has to have the same physical and virtual address, because it turns
	   off paging.  Copy it near the end of the first page, out of the way
	   of BIOS variables. */

	memcpy ((void *) (0x1000 - sizeof (real_mode_switch)),
		real_mode_switch, sizeof (real_mode_switch));

	/* Set up the IDT for real mode. */

	__asm__ __volatile__ ("lidt %0" : : "m" (real_mode_idt));

	/* Set up a GDT from which we can load segment descriptors for real
	   mode.  The GDT is not used in real mode; it is just needed here to
	   prepare the descriptors. */

	__asm__ __volatile__ ("lgdt %0" : : "m" (real_mode_gdt));

	/* Load the data segment registers, and thus the descriptors ready for
	   real mode.  The base address of each segment is 0x100, 16 times the
	   selector value being loaded here.  This is so that the segment
	   registers don't have to be reloaded after switching to real mode:
	   the values are consistent for real mode operation already. */

	__asm__ __volatile__ ("movw $0x0010,%%ax\n"
				"\tmovw %%ax,%%ds\n"
				"\tmovw %%ax,%%es\n"
				"\tmovw %%ax,%%fs\n"
				"\tmovw %%ax,%%gs\n"
				"\tmovw %%ax,%%ss" : : : "eax");

	/* Jump to the 16-bit code that we copied earlier.  It disables paging
	   and the cache, switches to real mode, and jumps to the BIOS reset
	   entry point. */

	__asm__ __volatile__ ("ljmp $0x0008,%0"
				:
				: "i" ((void *) (0x1000 - sizeof (real_mode_switch))));
}

void show_regs(struct pt_regs * regs)
{
	printk("\n");
	printk("EIP: %04x:[<%08lx>]",0xffff & regs->cs,regs->eip);
	if (regs->cs & 3)
		printk(" ESP: %04x:%08lx",0xffff & regs->ss,regs->esp);
	printk(" EFLAGS: %08lx\n",regs->eflags);
	printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
		regs->eax,regs->ebx,regs->ecx,regs->edx);
	printk("ESI: %08lx EDI: %08lx EBP: %08lx",
		regs->esi, regs->edi, regs->ebp);
	printk(" DS: %04x ES: %04x FS: %04x GS: %04x\n",
		0xffff & regs->ds,0xffff & regs->es,
		0xffff & regs->fs,0xffff & regs->gs);
}

/*
 * Free current thread data structures etc..
 */

void exit_thread(void)
{
	/* forget lazy i387 state */
	if (last_task_used_math == current)
		last_task_used_math = NULL;
	/* forget local segments */
	__asm__ __volatile__("mov %w0,%%fs ; mov %w0,%%gs ; lldt %w0"
		: /* no outputs */
		: "r" (0));
	current->tss.ldt = 0;
	if (current->ldt) {
		void * ldt = current->ldt;
		current->ldt = NULL;
		vfree(ldt);
	}
}

void flush_thread(void)
{
	int i;

	if (current->ldt) {
		free_page((unsigned long) current->ldt);
		current->ldt = NULL;
		for (i=1 ; i<NR_TASKS ; i++) {
			if (task[i] == current)  {
				set_ldt_desc(gdt+(i<<1)+
					     FIRST_LDT_ENTRY,&default_ldt, 1);
				load_ldt(i);
			}
		}	
	}

	for (i=0 ; i<8 ; i++)
		current->debugreg[i] = 0;

	/*
	 * Forget coprocessor state..
	 */
#ifdef __SMP__
	if (current->flags & PF_USEDFPU) {
		stts();
	}
#else
	if (last_task_used_math == current) {
		last_task_used_math = NULL;
		stts();
	}
#endif
	current->used_math = 0;
	current->flags &= ~PF_USEDFPU;
}

void release_thread(struct task_struct *dead_task)
{
}

void copy_thread(int nr, unsigned long clone_flags, unsigned long esp,
	struct task_struct * p, struct pt_regs * regs)
{
	int i;
	struct pt_regs * childregs;

	p->tss.es = KERNEL_DS;
	p->tss.cs = KERNEL_CS;
	p->tss.ss = KERNEL_DS;
	p->tss.ds = KERNEL_DS;
	p->tss.fs = USER_DS;
	p->tss.gs = KERNEL_DS;
	p->tss.ss0 = KERNEL_DS;
	p->tss.esp0 = p->kernel_stack_page + PAGE_SIZE;
	p->tss.tr = _TSS(nr);
	childregs = ((struct pt_regs *) (p->kernel_stack_page + PAGE_SIZE)) - 1;
	p->tss.esp = (unsigned long) childregs;
	p->tss.eip = (unsigned long) ret_from_sys_call;
	*childregs = *regs;
	childregs->eax = 0;
	childregs->esp = esp;
	p->tss.back_link = 0;
	p->tss.eflags = regs->eflags & 0xffffcfff;	/* iopl is always 0 for a new process */
	p->tss.ldt = _LDT(nr);
	if (p->ldt) {
		p->ldt = (struct desc_struct*) vmalloc(LDT_ENTRIES*LDT_ENTRY_SIZE);
		if (p->ldt != NULL)
			memcpy(p->ldt, current->ldt, LDT_ENTRIES*LDT_ENTRY_SIZE);
	}
	set_tss_desc(gdt+(nr<<1)+FIRST_TSS_ENTRY,&(p->tss));
	if (p->ldt)
		set_ldt_desc(gdt+(nr<<1)+FIRST_LDT_ENTRY,p->ldt, 512);
	else
		set_ldt_desc(gdt+(nr<<1)+FIRST_LDT_ENTRY,&default_ldt, 1);
	p->tss.bitmap = offsetof(struct thread_struct,io_bitmap);
	for (i = 0; i < IO_BITMAP_SIZE+1 ; i++) /* IO bitmap is actually SIZE+1 */
		p->tss.io_bitmap[i] = ~0;
	if (last_task_used_math == current)
		__asm__("clts ; fnsave %0 ; frstor %0":"=m" (p->tss.i387));
}

/*
 * fill in the fpu structure for a core dump..
 */
int dump_fpu (struct pt_regs * regs, struct user_i387_struct* fpu)
{
	int fpvalid;

/* Flag indicating the math stuff is valid. We don't support this for the
   soft-float routines yet */
	if (hard_math) {
		if ((fpvalid = current->used_math) != 0) {
			if (last_task_used_math == current)
				__asm__("clts ; fnsave %0": :"m" (*fpu));
			else
				memcpy(fpu,&current->tss.i387.hard,sizeof(*fpu));
		}
	} else {
		/* we should dump the emulator state here, but we need to
		   convert it into standard 387 format first.. */
		fpvalid = 0;
	}

	return fpvalid;
}

/*
 * fill in the user structure for a core dump..
 */
void dump_thread(struct pt_regs * regs, struct user * dump)
{
	int i;

/* changed the size calculations - should hopefully work better. lbt */
	dump->magic = CMAGIC;
	dump->start_code = 0;
	dump->start_stack = regs->esp & ~(PAGE_SIZE - 1);
	dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT;
	dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))) >> PAGE_SHIFT;
	dump->u_dsize -= dump->u_tsize;
	dump->u_ssize = 0;
	for (i = 0; i < 8; i++)
		dump->u_debugreg[i] = current->debugreg[i];  

	if (dump->start_stack < TASK_SIZE)
		dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT;

	dump->regs = *regs;

	dump->u_fpvalid = dump_fpu (regs, &dump->i387);
}

asmlinkage int sys_fork(struct pt_regs regs)
{
	return do_fork(SIGCHLD, regs.esp, &regs);
}

asmlinkage int sys_clone(struct pt_regs regs)
{
	unsigned long clone_flags;
	unsigned long newsp;

	clone_flags = regs.ebx;
	newsp = regs.ecx;
	if (!newsp)
		newsp = regs.esp;
	return do_fork(clone_flags, newsp, &regs);
}

/*
 * sys_execve() executes a new program.
 */
asmlinkage int sys_execve(struct pt_regs regs)
{
	int error;
	char * filename;

	error = getname((char *) regs.ebx, &filename);
	if (error)
		return error;
	error = do_execve(filename, (char **) regs.ecx, (char **) regs.edx, &regs);
	putname(filename);
	return error;
}