Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
/*
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		The IP fragmentation functionality.
 *		
 * Authors:	Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
 *		Alan Cox <Alan.Cox@linux.org>
 *
 * Fixes:
 *		Alan Cox	:	Split from ip.c , see ip_input.c for history.
 */

#include <linux/types.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/skbuff.h>
#include <linux/ip.h>
#include <linux/icmp.h>
#include <linux/netdevice.h>
#include <net/sock.h>
#include <net/ip.h>
#include <net/icmp.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/firewall.h>
#include <linux/ip_fw.h>
#include <net/checksum.h>

/*
 *	Fragment cache limits. We will commit 256K at one time. Should we
 *	cross that limit we will prune down to 192K. This should cope with
 *	even the most extreme cases without allowing an attacker to measurably
 *	harm machine performance.
 */
 
#define IPFRAG_HIGH_THRESH		(256*1024)
#define IPFRAG_LOW_THRESH		(192*1024)

/*
 *	This fragment handler is a bit of a heap. On the other hand it works quite
 *	happily and handles things quite well.
 */

static struct ipq *ipqueue = NULL;		/* IP fragment queue	*/

unsigned long ip_frag_mem = 0;			/* Memory used for fragments */

/*
 *	Memory Tracking Functions
 */
 
extern __inline__ void frag_kfree_skb(struct sk_buff *skb, int type)
{
	unsigned long flags;
	save_flags(flags);
	cli();
	ip_frag_mem-=skb->truesize;
	restore_flags(flags);
	kfree_skb(skb,type);
}

extern __inline__ void frag_kfree_s(void *ptr, int len)
{
	unsigned long flags;
	save_flags(flags);
	cli();
	ip_frag_mem-=len;
	restore_flags(flags);
	kfree_s(ptr,len);
}
 
extern __inline__ void *frag_kmalloc(int size, int pri)
{
	unsigned long flags;
	void *vp=kmalloc(size,pri);
	if(!vp)
		return NULL;
	save_flags(flags);
	cli();
	ip_frag_mem+=size;
	restore_flags(flags);
	return vp;
}
 
/*
 *	Create a new fragment entry.
 */

static struct ipfrag *ip_frag_create(int offset, int end, struct sk_buff *skb, unsigned char *ptr)
{
	struct ipfrag *fp;
	unsigned long flags;

	fp = (struct ipfrag *) frag_kmalloc(sizeof(struct ipfrag), GFP_ATOMIC);
	if (fp == NULL)
	{
		NETDEBUG(printk("IP: frag_create: no memory left !\n"));
		return(NULL);
	}
	memset(fp, 0, sizeof(struct ipfrag));

	/* Fill in the structure. */
	fp->offset = offset;
	fp->end = end;
	fp->len = end - offset;
	fp->skb = skb;
	fp->ptr = ptr;
	
	/*
	 *	Charge for the SKB as well.
	 */
	 
	save_flags(flags);
	cli();
	ip_frag_mem+=skb->truesize;
	restore_flags(flags);

	return(fp);
}


/*
 *	Find the correct entry in the "incomplete datagrams" queue for
 *	this IP datagram, and return the queue entry address if found.
 */

static struct ipq *ip_find(struct iphdr *iph)
{
	struct ipq *qp;
	struct ipq *qplast;

	cli();
	qplast = NULL;
	for(qp = ipqueue; qp != NULL; qplast = qp, qp = qp->next)
	{
		if (iph->id== qp->iph->id && iph->saddr == qp->iph->saddr &&
			iph->daddr == qp->iph->daddr && iph->protocol == qp->iph->protocol)
		{
			del_timer(&qp->timer);	/* So it doesn't vanish on us. The timer will be reset anyway */
			sti();
			return(qp);
		}
	}
	sti();
	return(NULL);
}


/*
 *	Remove an entry from the "incomplete datagrams" queue, either
 *	because we completed, reassembled and processed it, or because
 *	it timed out.
 */

static void ip_free(struct ipq *qp)
{
	struct ipfrag *fp;
	struct ipfrag *xp;

	/*
	 * Stop the timer for this entry.
	 */

	del_timer(&qp->timer);

	/* Remove this entry from the "incomplete datagrams" queue. */
	cli();
	if (qp->prev == NULL)
	{
		ipqueue = qp->next;
		if (ipqueue != NULL)
			ipqueue->prev = NULL;
	}
	else
	{
		qp->prev->next = qp->next;
		if (qp->next != NULL)
			qp->next->prev = qp->prev;
	}

	/* Release all fragment data. */

	fp = qp->fragments;
	while (fp != NULL)
	{
		xp = fp->next;
		IS_SKB(fp->skb);
		frag_kfree_skb(fp->skb,FREE_READ);
		frag_kfree_s(fp, sizeof(struct ipfrag));
		fp = xp;
	}

	/* Release the IP header. */
	frag_kfree_s(qp->iph, 64 + 8);

	/* Finally, release the queue descriptor itself. */
	frag_kfree_s(qp, sizeof(struct ipq));
	sti();
}


/*
 *	Oops- a fragment queue timed out.  Kill it and send an ICMP reply.
 */

static void ip_expire(unsigned long arg)
{
	struct ipq *qp;

	qp = (struct ipq *)arg;

	/*
	 *	Send an ICMP "Fragment Reassembly Timeout" message.
	 */

	ip_statistics.IpReasmTimeout++;
	ip_statistics.IpReasmFails++;   
	/* This if is always true... shrug */
	if(qp->fragments!=NULL)
		icmp_send(qp->fragments->skb,ICMP_TIME_EXCEEDED,
				ICMP_EXC_FRAGTIME, 0, qp->dev);

	/*
	 *	Nuke the fragment queue.
	 */
	ip_free(qp);
}

/*
 *	Memory limiting on fragments. Evictor trashes the oldest 
 *	fragment queue until we are back under the low threshold
 */
 
static void ip_evictor(void)
{
	while(ip_frag_mem>IPFRAG_LOW_THRESH)
	{
		if(!ipqueue)
			panic("ip_evictor: memcount");
		ip_free(ipqueue);
	}
}

/*
 * 	Add an entry to the 'ipq' queue for a newly received IP datagram.
 * 	We will (hopefully :-) receive all other fragments of this datagram
 * 	in time, so we just create a queue for this datagram, in which we
 * 	will insert the received fragments at their respective positions.
 */

static struct ipq *ip_create(struct sk_buff *skb, struct iphdr *iph, struct device *dev)
{
	struct ipq *qp;
	int ihlen;

	qp = (struct ipq *) frag_kmalloc(sizeof(struct ipq), GFP_ATOMIC);
	if (qp == NULL)
	{
		NETDEBUG(printk("IP: create: no memory left !\n"));
		return(NULL);
		skb->dev = qp->dev;
	}
	memset(qp, 0, sizeof(struct ipq));

	/*
	 *	Allocate memory for the IP header (plus 8 octets for ICMP).
	 */

	ihlen = iph->ihl * 4;
	qp->iph = (struct iphdr *) frag_kmalloc(64 + 8, GFP_ATOMIC);
	if (qp->iph == NULL)
	{
		NETDEBUG(printk("IP: create: no memory left !\n"));
		frag_kfree_s(qp, sizeof(struct ipq));
		return(NULL);
	}

	memcpy(qp->iph, iph, ihlen + 8);
	qp->len = 0;
	qp->ihlen = ihlen;
	qp->fragments = NULL;
	qp->dev = dev;

	/* Start a timer for this entry. */
	qp->timer.expires = jiffies + IP_FRAG_TIME;	/* about 30 seconds	*/
	qp->timer.data = (unsigned long) qp;		/* pointer to queue	*/
	qp->timer.function = ip_expire;			/* expire function	*/
	add_timer(&qp->timer);

	/* Add this entry to the queue. */
	qp->prev = NULL;
	cli();
	qp->next = ipqueue;
	if (qp->next != NULL)
		qp->next->prev = qp;
	ipqueue = qp;
	sti();
	return(qp);
}


/*
 *	See if a fragment queue is complete.
 */

static int ip_done(struct ipq *qp)
{
	struct ipfrag *fp;
	int offset;

	/* Only possible if we received the final fragment. */
	if (qp->len == 0)
		return(0);

	/* Check all fragment offsets to see if they connect. */
	fp = qp->fragments;
	offset = 0;
	while (fp != NULL)
	{
		if (fp->offset > offset)
			return(0);	/* fragment(s) missing */
		offset = fp->end;
		fp = fp->next;
	}

	/* All fragments are present. */
	return(1);
}


/*
 *	Build a new IP datagram from all its fragments.
 *
 *	FIXME: We copy here because we lack an effective way of handling lists
 *	of bits on input. Until the new skb data handling is in I'm not going
 *	to touch this with a bargepole. 
 */

static struct sk_buff *ip_glue(struct ipq *qp)
{
	struct sk_buff *skb;
	struct iphdr *iph;
	struct ipfrag *fp;
	unsigned char *ptr;
	int count, len;

	/*
	 *	Allocate a new buffer for the datagram.
	 */
	len = qp->ihlen + qp->len;

	if ((skb = dev_alloc_skb(len)) == NULL)
	{
		ip_statistics.IpReasmFails++;
		NETDEBUG(printk("IP: queue_glue: no memory for gluing queue %p\n", qp));
		ip_free(qp);
		return(NULL);
	}

	/* Fill in the basic details. */
	skb_put(skb,len);
	skb->h.raw = skb->data;
	skb->free = 1;

	/* Copy the original IP headers into the new buffer. */
	ptr = (unsigned char *) skb->h.raw;
	memcpy(ptr, ((unsigned char *) qp->iph), qp->ihlen);
	ptr += qp->ihlen;

	count = 0;

	/* Copy the data portions of all fragments into the new buffer. */
	fp = qp->fragments;
	while(fp != NULL)
	{
		if(count+fp->len > skb->len)
		{
			NETDEBUG(printk("Invalid fragment list: Fragment over size.\n"));
			ip_free(qp);
			frag_kfree_skb(skb,FREE_WRITE);
			ip_statistics.IpReasmFails++;
			return NULL;
		}
		memcpy((ptr + fp->offset), fp->ptr, fp->len);
		count += fp->len;
		fp = fp->next;
	}

	/* We glued together all fragments, so remove the queue entry. */
	ip_free(qp);

	/* Done with all fragments. Fixup the new IP header. */
	iph = skb->h.iph;
	iph->frag_off = 0;
	iph->tot_len = htons((iph->ihl * 4) + count);
	skb->ip_hdr = iph;

	ip_statistics.IpReasmOKs++;
	return(skb);
}


/*
 *	Process an incoming IP datagram fragment.
 */

struct sk_buff *ip_defrag(struct iphdr *iph, struct sk_buff *skb, struct device *dev)
{
	struct ipfrag *prev, *next, *tmp;
	struct ipfrag *tfp;
	struct ipq *qp;
	struct sk_buff *skb2;
	unsigned char *ptr;
	int flags, offset;
	int i, ihl, end;
	
	ip_statistics.IpReasmReqds++;

	/*
	 *	Start by cleaning up the memory
	 */

	if(ip_frag_mem>IPFRAG_HIGH_THRESH)
		ip_evictor();
	/* 
	 *	Find the entry of this IP datagram in the "incomplete datagrams" queue. 
	 */
	 
	qp = ip_find(iph);

	/* Is this a non-fragmented datagram? */
	offset = ntohs(iph->frag_off);
	flags = offset & ~IP_OFFSET;
	offset &= IP_OFFSET;
	if (((flags & IP_MF) == 0) && (offset == 0))
	{
		if (qp != NULL)
			ip_free(qp);	/* Huh? How could this exist?? */
		return(skb);
	}

	offset <<= 3;		/* offset is in 8-byte chunks */
	ihl = iph->ihl * 4;

	/*
	 * If the queue already existed, keep restarting its timer as long
	 * as we still are receiving fragments.  Otherwise, create a fresh
	 * queue entry.
	 */

	if (qp != NULL)
	{
		/* ANK. If the first fragment is received,
		 * we should remember the correct IP header (with options)
		 */
	        if (offset == 0)
		{
			qp->ihlen = ihl;
			memcpy(qp->iph, iph, ihl+8);
		}
		del_timer(&qp->timer);
		qp->timer.expires = jiffies + IP_FRAG_TIME;	/* about 30 seconds */
		qp->timer.data = (unsigned long) qp;	/* pointer to queue */
		qp->timer.function = ip_expire;		/* expire function */
		add_timer(&qp->timer);
	}
	else
	{
		/*
		 *	If we failed to create it, then discard the frame
		 */
		if ((qp = ip_create(skb, iph, dev)) == NULL)
		{
			skb->sk = NULL;
			frag_kfree_skb(skb, FREE_READ);
			ip_statistics.IpReasmFails++;
			return NULL;
		}
	}

	/*
	 *	Determine the position of this fragment.
	 */

	end = offset + ntohs(iph->tot_len) - ihl;

	/*
	 *	Point into the IP datagram 'data' part.
	 */

	ptr = skb->data + ihl;

	/*
	 *	Is this the final fragment?
	 */

	if ((flags & IP_MF) == 0)
		qp->len = end;

	/*
	 * 	Find out which fragments are in front and at the back of us
	 * 	in the chain of fragments so far.  We must know where to put
	 * 	this fragment, right?
	 */

	prev = NULL;
	for(next = qp->fragments; next != NULL; next = next->next)
	{
		if (next->offset > offset)
			break;	/* bingo! */
		prev = next;
	}

	/*
	 * 	We found where to put this one.
	 * 	Check for overlap with preceding fragment, and, if needed,
	 * 	align things so that any overlaps are eliminated.
	 */
	if (prev != NULL && offset < prev->end)
	{
		i = prev->end - offset;
		offset += i;	/* ptr into datagram */
		ptr += i;	/* ptr into fragment data */
	}

	/*
	 * Look for overlap with succeeding segments.
	 * If we can merge fragments, do it.
	 */

	for(tmp=next; tmp != NULL; tmp = tfp)
	{
		tfp = tmp->next;
		if (tmp->offset >= end)
			break;		/* no overlaps at all */

		i = end - next->offset;			/* overlap is 'i' bytes */
		tmp->len -= i;				/* so reduce size of	*/
		tmp->offset += i;			/* next fragment	*/
		tmp->ptr += i;
		/*
		 *	If we get a frag size of <= 0, remove it and the packet
		 *	that it goes with.
		 */
		if (tmp->len <= 0)
		{
			if (tmp->prev != NULL)
				tmp->prev->next = tmp->next;
			else
				qp->fragments = tmp->next;

			if (tfp->next != NULL)
				tmp->next->prev = tmp->prev;
			
			next=tfp;	/* We have killed the original next frame */

			frag_kfree_skb(tmp->skb,FREE_READ);
			frag_kfree_s(tmp, sizeof(struct ipfrag));
		}
	}

	/*
	 *	Insert this fragment in the chain of fragments.
	 */

	tfp = NULL;
	tfp = ip_frag_create(offset, end, skb, ptr);

	/*
	 *	No memory to save the fragment - so throw the lot
	 */

	if (!tfp)
	{
		skb->sk = NULL;
		frag_kfree_skb(skb, FREE_READ);
		return NULL;
	}
	tfp->prev = prev;
	tfp->next = next;
	if (prev != NULL)
		prev->next = tfp;
	else
		qp->fragments = tfp;

	if (next != NULL)
		next->prev = tfp;

	/*
	 * 	OK, so we inserted this new fragment into the chain.
	 * 	Check if we now have a full IP datagram which we can
	 * 	bump up to the IP layer...
	 */

	if (ip_done(qp))
	{
		skb2 = ip_glue(qp);		/* glue together the fragments */
		return(skb2);
	}
	return(NULL);
}


/*
 *	This IP datagram is too large to be sent in one piece.  Break it up into
 *	smaller pieces (each of size equal to the MAC header plus IP header plus
 *	a block of the data of the original IP data part) that will yet fit in a
 *	single device frame, and queue such a frame for sending by calling the
 *	ip_queue_xmit().  Note that this is recursion, and bad things will happen
 *	if this function causes a loop...
 *
 *	Yes this is inefficient, feel free to submit a quicker one.
 *
 */
 
void ip_fragment(struct sock *sk, struct sk_buff *skb, struct device *dev, int is_frag)
{
	struct iphdr *iph;
	unsigned char *raw;
	unsigned char *ptr;
	struct sk_buff *skb2;
	int left, mtu, hlen, len;
	int offset;
	unsigned long flags;

	/*
	 *	Point into the IP datagram header.
	 */

	raw = skb->data;
#if 0
	iph = (struct iphdr *) (raw + dev->hard_header_len);	
	skb->ip_hdr = iph;
#else
	iph = skb->ip_hdr;
#endif

	/*
	 *	Setup starting values.
	 */

	hlen = iph->ihl * 4;
	left = ntohs(iph->tot_len) - hlen;	/* Space per frame */
	hlen += dev->hard_header_len;		/* Total header size */
	mtu = (dev->mtu - hlen);		/* Size of data space */
	ptr = (raw + hlen);			/* Where to start from */

	/*
	 *	Check for any "DF" flag. [DF means do not fragment]
	 */

	if (ntohs(iph->frag_off) & IP_DF)
	{
		ip_statistics.IpFragFails++;
		printk("ip_queue_xmit: frag needed\n");
		return;
	}

	/*
	 *	The protocol doesn't seem to say what to do in the case that the
	 *	frame + options doesn't fit the mtu. As it used to fall down dead
	 *	in this case we were fortunate it didn't happen
	 */

	if(mtu<8)
	{
		/* It's wrong but it's better than nothing */
		icmp_send(skb,ICMP_DEST_UNREACH,ICMP_FRAG_NEEDED,dev->mtu, dev);
		ip_statistics.IpFragFails++;
		return;
	}

	/*
	 *	Fragment the datagram.
	 */

	/*
	 *	The initial offset is 0 for a complete frame. When
	 *	fragmenting fragments it's wherever this one starts.
	 */

	if (is_frag & 2)
		offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
	else
		offset = 0;


	/*
	 *	Keep copying data until we run out.
	 */

	while(left > 0)
	{
		len = left;
		/* IF: it doesn't fit, use 'mtu' - the data space left */
		if (len > mtu)
			len = mtu;
		/* IF: we are not sending upto and including the packet end
		   then align the next start on an eight byte boundary */
		if (len < left)
		{
			len/=8;
			len*=8;
		}
		/*
		 *	Allocate buffer.
		 */

		if ((skb2 = alloc_skb(len + hlen+15,GFP_ATOMIC)) == NULL)
		{
			NETDEBUG(printk("IP: frag: no memory for new fragment!\n"));
			ip_statistics.IpFragFails++;
			return;
		}

		/*
		 *	Set up data on packet
		 */

		skb2->arp = skb->arp;
		if(skb->free==0)
			printk("IP fragmenter: BUG free!=1 in fragmenter\n");
		skb2->free = 1;
		skb_put(skb2,len + hlen);
		skb2->h.raw=(char *) skb2->data;
		/*
		 *	Charge the memory for the fragment to any owner
		 *	it might possess
		 */

		save_flags(flags);
		if (sk)
		{
			cli();
			sk->wmem_alloc += skb2->truesize;
			skb2->sk=sk;
		}
		restore_flags(flags);
		skb2->raddr = skb->raddr;	/* For rebuild_header - must be here */

		/*
		 *	Copy the packet header into the new buffer.
		 */

		memcpy(skb2->h.raw, raw, hlen);

		/*
		 *	Copy a block of the IP datagram.
		 */
		memcpy(skb2->h.raw + hlen, ptr, len);
		left -= len;

		skb2->h.raw+=dev->hard_header_len;

		/*
		 *	Fill in the new header fields.
		 */
		iph = (struct iphdr *)(skb2->h.raw/*+dev->hard_header_len*/);
		iph->frag_off = htons((offset >> 3));
		skb2->ip_hdr = iph;

		/* ANK: dirty, but effective trick. Upgrade options only if
		 * the segment to be fragmented was THE FIRST (otherwise,
		 * options are already fixed) and make it ONCE
		 * on the initial skb, so that all the following fragments
		 * will inherit fixed options.
		 */
		if (offset == 0)
			ip_options_fragment(skb);

		/*
		 *	Added AC : If we are fragmenting a fragment thats not the
		 *		   last fragment then keep MF on each bit
		 */
		if (left > 0 || (is_frag & 1))
			iph->frag_off |= htons(IP_MF);
		ptr += len;
		offset += len;

		/*
		 *	Put this fragment into the sending queue.
		 */

		ip_statistics.IpFragCreates++;

		ip_queue_xmit(sk, dev, skb2, 2);
	}
	ip_statistics.IpFragOKs++;
}