/*
* linux/fs/proc/array.c
*
* Copyright (C) 1992 by Linus Torvalds
* based on ideas by Darren Senn
*
* Fixes:
* Michael. K. Johnson: stat,statm extensions.
* <johnsonm@stolaf.edu>
*
* Pauline Middelink : Made cmdline,envline only break at '\0's, to
* make sure SET_PROCTITLE works. Also removed
* bad '!' which forced address recalculation for
* EVERY character on the current page.
* <middelin@polyware.iaf.nl>
*
* Danny ter Haar : Some minor additions for cpuinfo
* <danny@ow.nl>
*
* Alessandro Rubini : profile extension.
* <rubini@ipvvis.unipv.it>
*
* Jeff Tranter : added BogoMips field to cpuinfo
* <Jeff_Tranter@Mitel.COM>
*
* Bruno Haible : remove 4K limit for the maps file
* <haible@ma2s2.mathematik.uni-karlsruhe.de>
*/
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/tty.h>
#include <linux/user.h>
#include <linux/a.out.h>
#include <linux/string.h>
#include <linux/mman.h>
#include <linux/proc_fs.h>
#include <linux/ioport.h>
#include <linux/config.h>
#include <linux/mm.h>
#include <asm/segment.h>
#include <asm/pgtable.h>
#include <asm/io.h>
#define LOAD_INT(x) ((x) >> FSHIFT)
#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
#ifdef CONFIG_DEBUG_MALLOC
int get_malloc(char * buffer);
#endif
static int read_core(struct inode * inode, struct file * file,char * buf, int count)
{
unsigned long p = file->f_pos;
int read;
int count1;
char * pnt;
struct user dump;
memset(&dump, 0, sizeof(struct user));
dump.magic = CMAGIC;
dump.u_dsize = high_memory >> 12;
if (count < 0)
return -EINVAL;
if (p >= high_memory + PAGE_SIZE)
return 0;
if (count > high_memory + PAGE_SIZE - p)
count = high_memory + PAGE_SIZE - p;
read = 0;
if (p < sizeof(struct user) && count > 0) {
count1 = count;
if (p + count1 > sizeof(struct user))
count1 = sizeof(struct user)-p;
pnt = (char *) &dump + p;
memcpy_tofs(buf,(void *) pnt, count1);
buf += count1;
p += count1;
count -= count1;
read += count1;
}
while (p < 2*PAGE_SIZE && count > 0) {
put_user(0,buf);
buf++;
p++;
count--;
read++;
}
memcpy_tofs(buf,(void *) (p - PAGE_SIZE),count);
read += count;
file->f_pos += read;
return read;
}
static struct file_operations proc_kcore_operations = {
NULL, /* lseek */
read_core,
};
struct inode_operations proc_kcore_inode_operations = {
&proc_kcore_operations,
};
#ifdef CONFIG_PROFILE
extern unsigned long prof_len;
extern unsigned long * prof_buffer;
/*
* This function accesses profiling information. The returned data is
* binary: the sampling step and the actual contents of the profile
* buffer. Use of the program readprofile is recommended in order to
* get meaningful info out of these data.
*/
static int read_profile(struct inode *inode, struct file *file, char *buf, int count)
{
unsigned long p = file->f_pos;
int read;
char * pnt;
unsigned long sample_step = 1 << CONFIG_PROFILE_SHIFT;
if (count < 0)
return -EINVAL;
if (p >= (prof_len+1)*sizeof(unsigned long))
return 0;
if (count > (prof_len+1)*sizeof(unsigned long) - p)
count = (prof_len+1)*sizeof(unsigned long) - p;
read = 0;
while (p < sizeof(unsigned long) && count > 0) {
put_user(*((char *)(&sample_step)+p),buf);
buf++; p++; count--; read++;
}
pnt = (char *)prof_buffer + p - sizeof(unsigned long);
memcpy_tofs(buf,(void *)pnt,count);
read += count;
file->f_pos += read;
return read;
}
/* Writing to /proc/profile resets the counters */
static int write_profile(struct inode * inode, struct file * file, char * buf, int count)
{
int i=prof_len;
while (i--)
prof_buffer[i]=0UL;
return count;
}
static struct file_operations proc_profile_operations = {
NULL, /* lseek */
read_profile,
write_profile,
};
struct inode_operations proc_profile_inode_operations = {
&proc_profile_operations,
};
#endif /* CONFIG_PROFILE */
static int get_loadavg(char * buffer)
{
int a, b, c;
a = avenrun[0] + (FIXED_1/200);
b = avenrun[1] + (FIXED_1/200);
c = avenrun[2] + (FIXED_1/200);
return sprintf(buffer,"%d.%02d %d.%02d %d.%02d %d/%d\n",
LOAD_INT(a), LOAD_FRAC(a),
LOAD_INT(b), LOAD_FRAC(b),
LOAD_INT(c), LOAD_FRAC(c),
nr_running, nr_tasks);
}
static int get_kstat(char * buffer)
{
int i, len;
unsigned sum = 0;
for (i = 0 ; i < 16 ; i++)
sum += kstat.interrupts[i];
len = sprintf(buffer,
"cpu %u %u %u %lu\n"
"disk %u %u %u %u\n"
"page %u %u\n"
"swap %u %u\n"
"intr %u",
kstat.cpu_user,
kstat.cpu_nice,
kstat.cpu_system,
jiffies - (kstat.cpu_user + kstat.cpu_nice + kstat.cpu_system),
kstat.dk_drive[0],
kstat.dk_drive[1],
kstat.dk_drive[2],
kstat.dk_drive[3],
kstat.pgpgin,
kstat.pgpgout,
kstat.pswpin,
kstat.pswpout,
sum);
for (i = 0 ; i < 16 ; i++)
len += sprintf(buffer + len, " %u", kstat.interrupts[i]);
len += sprintf(buffer + len,
"\nctxt %u\n"
"btime %lu\n",
kstat.context_swtch,
xtime.tv_sec - jiffies / HZ);
return len;
}
static int get_uptime(char * buffer)
{
unsigned long uptime;
unsigned long idle;
uptime = jiffies;
idle = task[0]->utime + task[0]->stime;
/* The formula for the fraction parts really is ((t * 100) / HZ) % 100, but
that would overflow about every five days at HZ == 100.
Therefore the identity a = (a / b) * b + a % b is used so that it is
calculated as (((t / HZ) * 100) + ((t % HZ) * 100) / HZ) % 100.
The part in front of the '+' always evaluates as 0 (mod 100). All divisions
in the above formulas are truncating. For HZ being a power of 10, the
calculations simplify to the version in the #else part (if the printf
format is adapted to the same number of digits as zeroes in HZ.
*/
#if HZ!=100
return sprintf(buffer,"%lu.%02lu %lu.%02lu\n",
uptime / HZ,
(((uptime % HZ) * 100) / HZ) % 100,
idle / HZ,
(((idle % HZ) * 100) / HZ) % 100);
#else
return sprintf(buffer,"%lu.%02lu %lu.%02lu\n",
uptime / HZ,
uptime % HZ,
idle / HZ,
idle % HZ);
#endif
}
static int get_meminfo(char * buffer)
{
struct sysinfo i;
si_meminfo(&i);
si_swapinfo(&i);
return sprintf(buffer, " total: used: free: shared: buffers:\n"
"Mem: %8lu %8lu %8lu %8lu %8lu\n"
"Swap: %8lu %8lu %8lu\n",
i.totalram, i.totalram-i.freeram, i.freeram, i.sharedram, i.bufferram,
i.totalswap, i.totalswap-i.freeswap, i.freeswap);
}
static int get_version(char * buffer)
{
extern char *linux_banner;
strcpy(buffer, linux_banner);
return strlen(buffer);
}
static struct task_struct ** get_task(pid_t pid)
{
struct task_struct ** p;
p = task;
while (++p < task+NR_TASKS) {
if (*p && (*p)->pid == pid)
return p;
}
return NULL;
}
static unsigned long get_phys_addr(struct task_struct * p, unsigned long ptr)
{
pgd_t *page_dir;
pmd_t *page_middle;
pte_t pte;
if (!p || ptr >= TASK_SIZE)
return 0;
page_dir = pgd_offset(p,ptr);
if (pgd_none(*page_dir))
return 0;
if (pgd_bad(*page_dir)) {
printk("bad page directory entry %08lx\n", pgd_val(*page_dir));
pgd_clear(page_dir);
return 0;
}
page_middle = pmd_offset(page_dir,ptr);
if (pmd_none(*page_middle))
return 0;
if (pmd_bad(*page_middle)) {
printk("bad page middle entry %08lx\n", pmd_val(*page_middle));
pmd_clear(page_middle);
return 0;
}
pte = *pte_offset(page_middle,ptr);
if (!pte_present(pte))
return 0;
return pte_page(pte) + (ptr & ~PAGE_MASK);
}
static int get_array(struct task_struct ** p, unsigned long start, unsigned long end, char * buffer)
{
unsigned long addr;
int size = 0, result = 0;
char c;
if (start >= end)
return result;
for (;;) {
addr = get_phys_addr(*p, start);
if (!addr)
goto ready;
do {
c = *(char *) addr;
if (!c)
result = size;
if (size < PAGE_SIZE)
buffer[size++] = c;
else
goto ready;
addr++;
start++;
if (!c && start >= end)
goto ready;
} while (addr & ~PAGE_MASK);
}
ready:
/* remove the trailing blanks, used to fill out argv,envp space */
while (result>0 && buffer[result-1]==' ')
result--;
return result;
}
static int get_env(int pid, char * buffer)
{
struct task_struct ** p = get_task(pid);
if (!p || !*p)
return 0;
return get_array(p, (*p)->mm->env_start, (*p)->mm->env_end, buffer);
}
static int get_arg(int pid, char * buffer)
{
struct task_struct ** p = get_task(pid);
if (!p || !*p)
return 0;
return get_array(p, (*p)->mm->arg_start, (*p)->mm->arg_end, buffer);
}
static unsigned long get_wchan(struct task_struct *p)
{
#ifdef __i386__
unsigned long ebp, eip;
unsigned long stack_page;
int count = 0;
if (!p || p == current || p->state == TASK_RUNNING)
return 0;
stack_page = p->kernel_stack_page;
if (!stack_page)
return 0;
ebp = p->tss.ebp;
do {
if (ebp < stack_page || ebp >= 4092+stack_page)
return 0;
eip = *(unsigned long *) (ebp+4);
if ((void *)eip != sleep_on &&
(void *)eip != interruptible_sleep_on)
return eip;
ebp = *(unsigned long *) ebp;
} while (count++ < 16);
#endif
return 0;
}
#define KSTK_EIP(stack) (((unsigned long *)stack)[1019])
#define KSTK_ESP(stack) (((unsigned long *)stack)[1022])
static int get_stat(int pid, char * buffer)
{
struct task_struct ** p = get_task(pid);
unsigned long sigignore=0, sigcatch=0, bit=1, wchan;
unsigned long vsize, eip, esp;
int i,tty_pgrp;
char state;
if (!p || !*p)
return 0;
if ((*p)->state < 0 || (*p)->state > 5)
state = '.';
else
state = "RSDZTD"[(*p)->state];
eip = esp = 0;
vsize = (*p)->kernel_stack_page;
if (vsize) {
eip = KSTK_EIP(vsize);
esp = KSTK_ESP(vsize);
vsize = (*p)->mm->brk - (*p)->mm->start_code + PAGE_SIZE-1;
if (esp)
vsize += TASK_SIZE - esp;
}
wchan = get_wchan(*p);
for(i=0; i<32; ++i) {
switch((unsigned long) (*p)->sigaction[i].sa_handler) {
case 1: sigignore |= bit; break;
case 0: break;
default: sigcatch |= bit;
} bit <<= 1;
}
if ((*p)->tty)
tty_pgrp = (*p)->tty->pgrp;
else
tty_pgrp = -1;
return sprintf(buffer,"%d (%s) %c %d %d %d %d %d %lu %lu \
%lu %lu %lu %ld %ld %ld %ld %ld %ld %lu %lu %ld %lu %lu %lu %lu %lu %lu %lu %lu %lu \
%lu %lu %lu %lu\n",
pid,
(*p)->comm,
state,
(*p)->p_pptr->pid,
(*p)->pgrp,
(*p)->session,
(*p)->tty ? (*p)->tty->device : 0,
tty_pgrp,
(*p)->flags,
(*p)->mm->min_flt,
(*p)->mm->cmin_flt,
(*p)->mm->maj_flt,
(*p)->mm->cmaj_flt,
(*p)->utime,
(*p)->stime,
(*p)->cutime,
(*p)->cstime,
(*p)->counter, /* this is the kernel priority ---
subtract 30 in your user-level program. */
(*p)->priority, /* this is the nice value ---
subtract 15 in your user-level program. */
(*p)->timeout,
(*p)->it_real_value,
(*p)->start_time,
vsize,
(*p)->mm->rss, /* you might want to shift this left 3 */
(*p)->rlim[RLIMIT_RSS].rlim_cur,
(*p)->mm->start_code,
(*p)->mm->end_code,
(*p)->mm->start_stack,
esp,
eip,
(*p)->signal,
(*p)->blocked,
sigignore,
sigcatch,
wchan);
}
static inline void statm_pte_range(pmd_t * pmd, unsigned long address, unsigned long size,
int * pages, int * shared, int * dirty, int * total)
{
pte_t * pte;
unsigned long end;
if (pmd_none(*pmd))
return;
if (pmd_bad(*pmd)) {
printk("statm_pte_range: bad pmd (%08lx)\n", pmd_val(*pmd));
pmd_clear(pmd);
return;
}
pte = pte_offset(pmd, address);
address &= ~PMD_MASK;
end = address + size;
if (end > PMD_SIZE)
end = PMD_SIZE;
do {
pte_t page = *pte;
address += PAGE_SIZE;
pte++;
if (pte_none(page))
continue;
++*total;
if (!pte_present(page))
continue;
++*pages;
if (pte_dirty(page))
++*dirty;
if (pte_page(page) >= high_memory)
continue;
if (mem_map[MAP_NR(pte_page(page))] > 1)
++*shared;
} while (address < end);
}
static inline void statm_pmd_range(pgd_t * pgd, unsigned long address, unsigned long size,
int * pages, int * shared, int * dirty, int * total)
{
pmd_t * pmd;
unsigned long end;
if (pgd_none(*pgd))
return;
if (pgd_bad(*pgd)) {
printk("statm_pmd_range: bad pgd (%08lx)\n", pgd_val(*pgd));
pgd_clear(pgd);
return;
}
pmd = pmd_offset(pgd, address);
address &= ~PGDIR_MASK;
end = address + size;
if (end > PGDIR_SIZE)
end = PGDIR_SIZE;
do {
statm_pte_range(pmd, address, end - address, pages, shared, dirty, total);
address = (address + PMD_SIZE) & PMD_MASK;
pmd++;
} while (address < end);
}
static void statm_pgd_range(pgd_t * pgd, unsigned long address, unsigned long end,
int * pages, int * shared, int * dirty, int * total)
{
while (address < end) {
statm_pmd_range(pgd, address, end - address, pages, shared, dirty, total);
address = (address + PGDIR_SIZE) & PGDIR_MASK;
pgd++;
}
}
static int get_statm(int pid, char * buffer)
{
struct task_struct ** p = get_task(pid);
int size=0, resident=0, share=0, trs=0, lrs=0, drs=0, dt=0;
if (!p || !*p)
return 0;
if ((*p)->state != TASK_ZOMBIE) {
struct vm_area_struct * vma = (*p)->mm->mmap;
while (vma) {
pgd_t *pgd = pgd_offset(*p, vma->vm_start);
int pages = 0, shared = 0, dirty = 0, total = 0;
statm_pgd_range(pgd, vma->vm_start, vma->vm_end, &pages, &shared, &dirty, &total);
resident += pages;
share += shared;
dt += dirty;
size += total;
if (vma->vm_flags & VM_EXECUTABLE)
trs += pages; /* text */
else if (vma->vm_flags & VM_GROWSDOWN)
drs += pages; /* stack */
else if (vma->vm_end > 0x60000000)
lrs += pages; /* library */
else
drs += pages;
vma = vma->vm_next;
}
}
return sprintf(buffer,"%d %d %d %d %d %d %d\n",
size, resident, share, trs, lrs, drs, dt);
}
/*
* The way we support synthetic files > 4K
* - without storing their contents in some buffer and
* - without walking through the entire synthetic file until we reach the
* position of the requested data
* is to cleverly encode the current position in the file's f_pos field.
* There is no requirement that a read() call which returns `count' bytes
* of data increases f_pos by exactly `count'.
*
* This idea is Linus' one. Bruno implemented it.
*/
/*
* For the /proc/<pid>/maps file, we use fixed length records, each containing
* a single line.
*/
#define MAPS_LINE_LENGTH 1024
#define MAPS_LINE_SHIFT 10
/*
* f_pos = (number of the vma in the task->mm->mmap list) * MAPS_LINE_LENGTH
* + (index into the line)
*/
#define MAPS_LINE_FORMAT "%08lx-%08lx %s %08lx %02x:%02x %lu\n"
#define MAPS_LINE_MAX 49 /* sum of 8 1 8 1 4 1 8 1 2 1 2 1 10 1 */
static int read_maps (int pid, struct file * file, char * buf, int count)
{
struct task_struct ** p = get_task(pid);
char * destptr;
loff_t lineno;
int column;
struct vm_area_struct * map;
int i;
if (!p || !*p)
return -EINVAL;
if (count == 0)
return 0;
/* decode f_pos */
lineno = file->f_pos >> MAPS_LINE_SHIFT;
column = file->f_pos & (MAPS_LINE_LENGTH-1);
/* quickly go to line lineno */
for (map = (*p)->mm->mmap, i = 0; map && (i < lineno); map = map->vm_next, i++)
continue;
destptr = buf;
for ( ; map ; ) {
/* produce the next line */
char line[MAPS_LINE_MAX+1];
char str[5], *cp = str;
int flags;
dev_t dev;
unsigned long ino;
int len;
flags = map->vm_flags;
*cp++ = flags & VM_READ ? 'r' : '-';
*cp++ = flags & VM_WRITE ? 'w' : '-';
*cp++ = flags & VM_EXEC ? 'x' : '-';
*cp++ = flags & VM_MAYSHARE ? 's' : 'p';
*cp++ = 0;
if (map->vm_inode != NULL) {
dev = map->vm_inode->i_dev;
ino = map->vm_inode->i_ino;
} else {
dev = 0;
ino = 0;
}
len = sprintf(line, MAPS_LINE_FORMAT,
map->vm_start, map->vm_end, str, map->vm_offset,
MAJOR(dev),MINOR(dev), ino);
if (column >= len) {
column = 0; /* continue with next line at column 0 */
lineno++;
map = map->vm_next;
continue;
}
i = len-column;
if (i > count)
i = count;
memcpy_tofs(destptr, line+column, i);
destptr += i; count -= i;
column += i;
if (column >= len) {
column = 0; /* next time: next line at column 0 */
lineno++;
map = map->vm_next;
}
/* done? */
if (count == 0)
break;
/* By writing to user space, we might have slept.
* Stop the loop, to avoid a race condition.
*/
if (*p != current)
break;
}
/* encode f_pos */
file->f_pos = (lineno << MAPS_LINE_SHIFT) + column;
return destptr-buf;
}
extern int get_module_list(char *);
extern int get_device_list(char *);
extern int get_filesystem_list(char *);
extern int get_ksyms_list(char *);
extern int get_irq_list(char *);
extern int get_dma_list(char *);
extern int get_cpuinfo(char *);
extern int get_pci_list(char*);
static int get_root_array(char * page, int type)
{
switch (type) {
case PROC_LOADAVG:
return get_loadavg(page);
case PROC_UPTIME:
return get_uptime(page);
case PROC_MEMINFO:
return get_meminfo(page);
#ifdef CONFIG_PCI
case PROC_PCI:
return get_pci_list(page);
#endif
case PROC_CPUINFO:
return get_cpuinfo(page);
case PROC_VERSION:
return get_version(page);
#ifdef CONFIG_DEBUG_MALLOC
case PROC_MALLOC:
return get_malloc(page);
#endif
case PROC_MODULES:
return get_module_list(page);
case PROC_STAT:
return get_kstat(page);
case PROC_DEVICES:
return get_device_list(page);
case PROC_INTERRUPTS:
return get_irq_list(page);
case PROC_FILESYSTEMS:
return get_filesystem_list(page);
case PROC_KSYMS:
return get_ksyms_list(page);
case PROC_DMA:
return get_dma_list(page);
case PROC_IOPORTS:
return get_ioport_list(page);
}
return -EBADF;
}
static int get_process_array(char * page, int pid, int type)
{
switch (type) {
case PROC_PID_ENVIRON:
return get_env(pid, page);
case PROC_PID_CMDLINE:
return get_arg(pid, page);
case PROC_PID_STAT:
return get_stat(pid, page);
case PROC_PID_STATM:
return get_statm(pid, page);
}
return -EBADF;
}
static inline int fill_array(char * page, int pid, int type)
{
if (pid)
return get_process_array(page, pid, type);
return get_root_array(page, type);
}
static int array_read(struct inode * inode, struct file * file,char * buf, int count)
{
unsigned long page;
int length;
int end;
unsigned int type, pid;
if (count < 0)
return -EINVAL;
if (!(page = __get_free_page(GFP_KERNEL)))
return -ENOMEM;
type = inode->i_ino;
pid = type >> 16;
type &= 0x0000ffff;
length = fill_array((char *) page, pid, type);
if (length < 0) {
free_page(page);
return length;
}
if (file->f_pos >= length) {
free_page(page);
return 0;
}
if (count + file->f_pos > length)
count = length - file->f_pos;
end = count + file->f_pos;
memcpy_tofs(buf, (char *) page + file->f_pos, count);
free_page(page);
file->f_pos = end;
return count;
}
static struct file_operations proc_array_operations = {
NULL, /* array_lseek */
array_read,
NULL, /* array_write */
NULL, /* array_readdir */
NULL, /* array_select */
NULL, /* array_ioctl */
NULL, /* mmap */
NULL, /* no special open code */
NULL, /* no special release code */
NULL /* can't fsync */
};
struct inode_operations proc_array_inode_operations = {
&proc_array_operations, /* default base directory file-ops */
NULL, /* create */
NULL, /* lookup */
NULL, /* link */
NULL, /* unlink */
NULL, /* symlink */
NULL, /* mkdir */
NULL, /* rmdir */
NULL, /* mknod */
NULL, /* rename */
NULL, /* readlink */
NULL, /* follow_link */
NULL, /* bmap */
NULL, /* truncate */
NULL /* permission */
};
static int arraylong_read (struct inode * inode, struct file * file, char * buf, int count)
{
unsigned int pid = inode->i_ino >> 16;
unsigned int type = inode->i_ino & 0x0000ffff;
if (count < 0)
return -EINVAL;
switch (type) {
case PROC_PID_MAPS:
return read_maps(pid, file, buf, count);
}
return -EINVAL;
}
static struct file_operations proc_arraylong_operations = {
NULL, /* array_lseek */
arraylong_read,
NULL, /* array_write */
NULL, /* array_readdir */
NULL, /* array_select */
NULL, /* array_ioctl */
NULL, /* mmap */
NULL, /* no special open code */
NULL, /* no special release code */
NULL /* can't fsync */
};
struct inode_operations proc_arraylong_inode_operations = {
&proc_arraylong_operations, /* default base directory file-ops */
NULL, /* create */
NULL, /* lookup */
NULL, /* link */
NULL, /* unlink */
NULL, /* symlink */
NULL, /* mkdir */
NULL, /* rmdir */
NULL, /* mknod */
NULL, /* rename */
NULL, /* readlink */
NULL, /* follow_link */
NULL, /* bmap */
NULL, /* truncate */
NULL /* permission */
};