/*
* linux/fs/exec.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*/
/*
* #!-checking implemented by tytso.
*/
/*
* Demand-loading implemented 01.12.91 - no need to read anything but
* the header into memory. The inode of the executable is put into
* "current->executable", and page faults do the actual loading. Clean.
*
* Once more I can proudly say that linux stood up to being changed: it
* was less than 2 hours work to get demand-loading completely implemented.
*
* Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
* current->executable is only used by the procfs. This allows a dispatch
* table to check for several different types of binary formats. We keep
* trying until we recognize the file or we run out of supported binary
* formats.
*/
#include <linux/fs.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/a.out.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/string.h>
#include <linux/stat.h>
#include <linux/fcntl.h>
#include <linux/ptrace.h>
#include <linux/user.h>
#include <linux/malloc.h>
#include <linux/binfmts.h>
#include <linux/personality.h>
#include <asm/system.h>
#include <asm/segment.h>
#include <asm/pgtable.h>
#include <linux/config.h>
asmlinkage int sys_exit(int exit_code);
asmlinkage int sys_brk(unsigned long);
static int load_aout_binary(struct linux_binprm *, struct pt_regs * regs);
static int load_aout_library(int fd);
static int aout_core_dump(long signr, struct pt_regs * regs);
extern void dump_thread(struct pt_regs *, struct user *);
/*
* Here are the actual binaries that will be accepted:
* add more with "register_binfmt()"..
*/
extern struct linux_binfmt elf_format;
static struct linux_binfmt aout_format = {
#ifndef CONFIG_BINFMT_ELF
NULL, NULL, load_aout_binary, load_aout_library, aout_core_dump
#else
&elf_format, NULL, load_aout_binary, load_aout_library, aout_core_dump
#endif
};
static struct linux_binfmt *formats = &aout_format;
int register_binfmt(struct linux_binfmt * fmt)
{
struct linux_binfmt ** tmp = &formats;
if (!fmt)
return -EINVAL;
if (fmt->next)
return -EBUSY;
while (*tmp) {
if (fmt == *tmp)
return -EBUSY;
tmp = &(*tmp)->next;
}
*tmp = fmt;
return 0;
}
int unregister_binfmt(struct linux_binfmt * fmt)
{
struct linux_binfmt ** tmp = &formats;
while (*tmp) {
if (fmt == *tmp) {
*tmp = fmt->next;
return 0;
}
tmp = &(*tmp)->next;
}
return -EINVAL;
}
int open_inode(struct inode * inode, int mode)
{
int error, fd;
struct file *f, **fpp;
if (!inode->i_op || !inode->i_op->default_file_ops)
return -EINVAL;
f = get_empty_filp();
if (!f)
return -ENFILE;
fd = 0;
fpp = current->files->fd;
for (;;) {
if (!*fpp)
break;
if (++fd >= NR_OPEN) {
f->f_count--;
return -EMFILE;
}
fpp++;
}
*fpp = f;
f->f_flags = mode;
f->f_mode = (mode+1) & O_ACCMODE;
f->f_inode = inode;
f->f_pos = 0;
f->f_reada = 0;
f->f_op = inode->i_op->default_file_ops;
if (f->f_op->open) {
error = f->f_op->open(inode,f);
if (error) {
*fpp = NULL;
f->f_count--;
return error;
}
}
inode->i_count++;
return fd;
}
/*
* These are the only things you should do on a core-file: use only these
* macros to write out all the necessary info.
*/
#define DUMP_WRITE(addr,nr) \
while (file.f_op->write(inode,&file,(char *)(addr),(nr)) != (nr)) goto close_coredump
#define DUMP_SEEK(offset) \
if (file.f_op->lseek) { \
if (file.f_op->lseek(inode,&file,(offset),0) != (offset)) \
goto close_coredump; \
} else file.f_pos = (offset)
/*
* Routine writes a core dump image in the current directory.
* Currently only a stub-function.
*
* Note that setuid/setgid files won't make a core-dump if the uid/gid
* changed due to the set[u|g]id. It's enforced by the "current->dumpable"
* field, which also makes sure the core-dumps won't be recursive if the
* dumping of the process results in another error..
*/
static int aout_core_dump(long signr, struct pt_regs * regs)
{
struct inode * inode = NULL;
struct file file;
unsigned short fs;
int has_dumped = 0;
char corefile[6+sizeof(current->comm)];
unsigned long dump_start, dump_size;
struct user dump;
if (!current->dumpable)
return 0;
current->dumpable = 0;
/* See if we have enough room to write the upage. */
if (current->rlim[RLIMIT_CORE].rlim_cur < PAGE_SIZE)
return 0;
fs = get_fs();
set_fs(KERNEL_DS);
memcpy(corefile,"core.",5);
#if 0
memcpy(corefile+5,current->comm,sizeof(current->comm));
#else
corefile[4] = '\0';
#endif
if (open_namei(corefile,O_CREAT | 2 | O_TRUNC,0600,&inode,NULL)) {
inode = NULL;
goto end_coredump;
}
if (!S_ISREG(inode->i_mode))
goto end_coredump;
if (!inode->i_op || !inode->i_op->default_file_ops)
goto end_coredump;
if (get_write_access(inode))
goto end_coredump;
file.f_mode = 3;
file.f_flags = 0;
file.f_count = 1;
file.f_inode = inode;
file.f_pos = 0;
file.f_reada = 0;
file.f_op = inode->i_op->default_file_ops;
if (file.f_op->open)
if (file.f_op->open(inode,&file))
goto done_coredump;
if (!file.f_op->write)
goto close_coredump;
has_dumped = 1;
strncpy(dump.u_comm, current->comm, sizeof(current->comm));
dump.u_ar0 = (struct pt_regs *)(((unsigned long)(&dump.regs)) - ((unsigned long)(&dump)));
dump.signal = signr;
dump_thread(regs, &dump);
/* If the size of the dump file exceeds the rlimit, then see what would happen
if we wrote the stack, but not the data area. */
if ((dump.u_dsize+dump.u_ssize+1) * PAGE_SIZE >
current->rlim[RLIMIT_CORE].rlim_cur)
dump.u_dsize = 0;
/* Make sure we have enough room to write the stack and data areas. */
if ((dump.u_ssize+1) * PAGE_SIZE >
current->rlim[RLIMIT_CORE].rlim_cur)
dump.u_ssize = 0;
set_fs(KERNEL_DS);
/* struct user */
DUMP_WRITE(&dump,sizeof(dump));
/* Now dump all of the user data. Include malloced stuff as well */
DUMP_SEEK(PAGE_SIZE);
/* now we start writing out the user space info */
set_fs(USER_DS);
/* Dump the data area */
if (dump.u_dsize != 0) {
dump_start = dump.u_tsize << 12;
dump_size = dump.u_dsize << 12;
DUMP_WRITE(dump_start,dump_size);
}
/* Now prepare to dump the stack area */
if (dump.u_ssize != 0) {
dump_start = dump.start_stack;
dump_size = dump.u_ssize << 12;
DUMP_WRITE(dump_start,dump_size);
}
/* Finally dump the task struct. Not be used by gdb, but could be useful */
set_fs(KERNEL_DS);
DUMP_WRITE(current,sizeof(*current));
close_coredump:
if (file.f_op->release)
file.f_op->release(inode,&file);
done_coredump:
put_write_access(inode);
end_coredump:
set_fs(fs);
iput(inode);
return has_dumped;
}
/*
* Note that a shared library must be both readable and executable due to
* security reasons.
*
* Also note that we take the address to load from from the file itself.
*/
asmlinkage int sys_uselib(const char * library)
{
int fd, retval;
struct file * file;
struct linux_binfmt * fmt;
fd = sys_open(library, 0, 0);
if (fd < 0)
return fd;
file = current->files->fd[fd];
retval = -ENOEXEC;
if (file && file->f_inode && file->f_op && file->f_op->read) {
for (fmt = formats ; fmt ; fmt = fmt->next) {
int (*fn)(int) = fmt->load_shlib;
if (!fn)
break;
retval = fn(fd);
if (retval != -ENOEXEC)
break;
}
}
sys_close(fd);
return retval;
}
/*
* create_tables() parses the env- and arg-strings in new user
* memory and creates the pointer tables from them, and puts their
* addresses on the "stack", returning the new stack pointer value.
*/
unsigned long * create_tables(char * p,int argc,int envc,int ibcs)
{
unsigned long *argv,*envp;
unsigned long * sp;
struct vm_area_struct *mpnt;
mpnt = (struct vm_area_struct *)kmalloc(sizeof(*mpnt), GFP_KERNEL);
if (mpnt) {
mpnt->vm_task = current;
mpnt->vm_start = PAGE_MASK & (unsigned long) p;
mpnt->vm_end = TASK_SIZE;
mpnt->vm_page_prot = PAGE_COPY;
mpnt->vm_flags = VM_STACK_FLAGS;
mpnt->vm_ops = NULL;
mpnt->vm_offset = 0;
mpnt->vm_inode = NULL;
mpnt->vm_pte = 0;
insert_vm_struct(current, mpnt);
}
sp = (unsigned long *) (0xfffffffc & (unsigned long) p);
sp -= envc+1;
envp = sp;
sp -= argc+1;
argv = sp;
if (!ibcs) {
put_fs_long((unsigned long)envp,--sp);
put_fs_long((unsigned long)argv,--sp);
}
put_fs_long((unsigned long)argc,--sp);
current->mm->arg_start = (unsigned long) p;
while (argc-->0) {
put_fs_long((unsigned long) p,argv++);
while (get_fs_byte(p++)) /* nothing */ ;
}
put_fs_long(0,argv);
current->mm->arg_end = current->mm->env_start = (unsigned long) p;
while (envc-->0) {
put_fs_long((unsigned long) p,envp++);
while (get_fs_byte(p++)) /* nothing */ ;
}
put_fs_long(0,envp);
current->mm->env_end = (unsigned long) p;
return sp;
}
/*
* count() counts the number of arguments/envelopes
*
* We also do some limited EFAULT checking: this isn't complete, but
* it does cover most cases. I'll have to do this correctly some day..
*/
static int count(char ** argv)
{
int error, i = 0;
char ** tmp, *p;
if ((tmp = argv) != NULL) {
error = verify_area(VERIFY_READ, tmp, sizeof(char *));
if (error)
return error;
while ((p = (char *) get_fs_long((unsigned long *) (tmp++))) != NULL) {
i++;
error = verify_area(VERIFY_READ, p, 1);
if (error)
return error;
}
}
return i;
}
/*
* 'copy_string()' copies argument/envelope strings from user
* memory to free pages in kernel mem. These are in a format ready
* to be put directly into the top of new user memory.
*
* Modified by TYT, 11/24/91 to add the from_kmem argument, which specifies
* whether the string and the string array are from user or kernel segments:
*
* from_kmem argv * argv **
* 0 user space user space
* 1 kernel space user space
* 2 kernel space kernel space
*
* We do this by playing games with the fs segment register. Since it
* is expensive to load a segment register, we try to avoid calling
* set_fs() unless we absolutely have to.
*/
unsigned long copy_strings(int argc,char ** argv,unsigned long *page,
unsigned long p, int from_kmem)
{
char *tmp, *pag = NULL;
int len, offset = 0;
unsigned long old_fs, new_fs;
if (!p)
return 0; /* bullet-proofing */
new_fs = get_ds();
old_fs = get_fs();
if (from_kmem==2)
set_fs(new_fs);
while (argc-- > 0) {
if (from_kmem == 1)
set_fs(new_fs);
if (!(tmp = (char *)get_fs_long(((unsigned long *)argv)+argc)))
panic("VFS: argc is wrong");
if (from_kmem == 1)
set_fs(old_fs);
len=0; /* remember zero-padding */
do {
len++;
} while (get_fs_byte(tmp++));
if (p < len) { /* this shouldn't happen - 128kB */
set_fs(old_fs);
return 0;
}
while (len) {
--p; --tmp; --len;
if (--offset < 0) {
offset = p % PAGE_SIZE;
if (from_kmem==2)
set_fs(old_fs);
if (!(pag = (char *) page[p/PAGE_SIZE]) &&
!(pag = (char *) page[p/PAGE_SIZE] =
(unsigned long *) get_free_page(GFP_USER)))
return 0;
if (from_kmem==2)
set_fs(new_fs);
}
*(pag + offset) = get_fs_byte(tmp);
}
}
if (from_kmem==2)
set_fs(old_fs);
return p;
}
unsigned long setup_arg_pages(unsigned long text_size,unsigned long * page)
{
unsigned long code_limit,data_limit,code_base,data_base;
int i;
code_limit = TASK_SIZE;
data_limit = TASK_SIZE;
code_base = data_base = 0;
current->mm->start_code = code_base;
data_base += data_limit;
for (i=MAX_ARG_PAGES-1 ; i>=0 ; i--) {
data_base -= PAGE_SIZE;
if (page[i]) {
current->mm->rss++;
put_dirty_page(current,page[i],data_base);
}
}
return data_limit;
}
/*
* Read in the complete executable. This is used for "-N" files
* that aren't on a block boundary, and for files on filesystems
* without bmap support.
*/
int read_exec(struct inode *inode, unsigned long offset,
char * addr, unsigned long count)
{
struct file file;
int result = -ENOEXEC;
if (!inode->i_op || !inode->i_op->default_file_ops)
goto end_readexec;
file.f_mode = 1;
file.f_flags = 0;
file.f_count = 1;
file.f_inode = inode;
file.f_pos = 0;
file.f_reada = 0;
file.f_op = inode->i_op->default_file_ops;
if (file.f_op->open)
if (file.f_op->open(inode,&file))
goto end_readexec;
if (!file.f_op || !file.f_op->read)
goto close_readexec;
if (file.f_op->lseek) {
if (file.f_op->lseek(inode,&file,offset,0) != offset)
goto close_readexec;
} else
file.f_pos = offset;
if (get_fs() == USER_DS) {
result = verify_area(VERIFY_WRITE, addr, count);
if (result)
goto close_readexec;
}
result = file.f_op->read(inode, &file, addr, count);
close_readexec:
if (file.f_op->release)
file.f_op->release(inode,&file);
end_readexec:
return result;
}
/*
* This function flushes out all traces of the currently running executable so
* that a new one can be started
*/
void flush_old_exec(struct linux_binprm * bprm)
{
int i;
int ch;
char * name;
current->dumpable = 1;
name = bprm->filename;
for (i=0; (ch = *(name++)) != '\0';) {
if (ch == '/')
i = 0;
else
if (i < 15)
current->comm[i++] = ch;
}
current->comm[i] = '\0';
/* Release all of the old mmap stuff. */
exit_mmap(current);
flush_thread();
if (bprm->e_uid != current->euid || bprm->e_gid != current->egid ||
permission(bprm->inode,MAY_READ))
current->dumpable = 0;
current->signal = 0;
for (i=0 ; i<32 ; i++) {
current->sigaction[i].sa_mask = 0;
current->sigaction[i].sa_flags = 0;
if (current->sigaction[i].sa_handler != SIG_IGN)
current->sigaction[i].sa_handler = NULL;
}
for (i=0 ; i<NR_OPEN ; i++)
if (FD_ISSET(i,¤t->files->close_on_exec))
sys_close(i);
FD_ZERO(¤t->files->close_on_exec);
clear_page_tables(current);
if (last_task_used_math == current)
last_task_used_math = NULL;
current->used_math = 0;
}
/*
* sys_execve() executes a new program.
*/
int do_execve(char * filename, char ** argv, char ** envp, struct pt_regs * regs)
{
struct linux_binprm bprm;
struct linux_binfmt * fmt;
unsigned long old_fs;
int i;
int retval;
int sh_bang = 0;
bprm.p = PAGE_SIZE*MAX_ARG_PAGES-4;
for (i=0 ; i<MAX_ARG_PAGES ; i++) /* clear page-table */
bprm.page[i] = 0;
retval = open_namei(filename, 0, 0, &bprm.inode, NULL);
if (retval)
return retval;
bprm.filename = filename;
if ((bprm.argc = count(argv)) < 0)
return bprm.argc;
if ((bprm.envc = count(envp)) < 0)
return bprm.envc;
restart_interp:
if (!S_ISREG(bprm.inode->i_mode)) { /* must be regular file */
retval = -EACCES;
goto exec_error2;
}
if (IS_NOEXEC(bprm.inode)) { /* FS mustn't be mounted noexec */
retval = -EPERM;
goto exec_error2;
}
if (!bprm.inode->i_sb) {
retval = -EACCES;
goto exec_error2;
}
i = bprm.inode->i_mode;
if (IS_NOSUID(bprm.inode) && (((i & S_ISUID) && bprm.inode->i_uid != current->
euid) || ((i & S_ISGID) && !in_group_p(bprm.inode->i_gid))) && !suser()) {
retval = -EPERM;
goto exec_error2;
}
/* make sure we don't let suid, sgid files be ptraced. */
if (current->flags & PF_PTRACED) {
bprm.e_uid = current->euid;
bprm.e_gid = current->egid;
} else {
bprm.e_uid = (i & S_ISUID) ? bprm.inode->i_uid : current->euid;
bprm.e_gid = (i & S_ISGID) ? bprm.inode->i_gid : current->egid;
}
if ((retval = permission(bprm.inode, MAY_EXEC)) != 0)
goto exec_error2;
if (!(bprm.inode->i_mode & 0111) && fsuser()) {
retval = -EACCES;
goto exec_error2;
}
/* better not execute files which are being written to */
if (bprm.inode->i_wcount > 0) {
retval = -ETXTBSY;
goto exec_error2;
}
memset(bprm.buf,0,sizeof(bprm.buf));
old_fs = get_fs();
set_fs(get_ds());
retval = read_exec(bprm.inode,0,bprm.buf,128);
set_fs(old_fs);
if (retval < 0)
goto exec_error2;
if ((bprm.buf[0] == '#') && (bprm.buf[1] == '!') && (!sh_bang)) {
/*
* This section does the #! interpretation.
* Sorta complicated, but hopefully it will work. -TYT
*/
char *cp, *interp, *i_name, *i_arg;
iput(bprm.inode);
bprm.buf[127] = '\0';
if ((cp = strchr(bprm.buf, '\n')) == NULL)
cp = bprm.buf+127;
*cp = '\0';
while (cp > bprm.buf) {
cp--;
if ((*cp == ' ') || (*cp == '\t'))
*cp = '\0';
else
break;
}
for (cp = bprm.buf+2; (*cp == ' ') || (*cp == '\t'); cp++);
if (!cp || *cp == '\0') {
retval = -ENOEXEC; /* No interpreter name found */
goto exec_error1;
}
interp = i_name = cp;
i_arg = 0;
for ( ; *cp && (*cp != ' ') && (*cp != '\t'); cp++) {
if (*cp == '/')
i_name = cp+1;
}
while ((*cp == ' ') || (*cp == '\t'))
*cp++ = '\0';
if (*cp)
i_arg = cp;
/*
* OK, we've parsed out the interpreter name and
* (optional) argument.
*/
if (sh_bang++ == 0) {
bprm.p = copy_strings(bprm.envc, envp, bprm.page, bprm.p, 0);
bprm.p = copy_strings(--bprm.argc, argv+1, bprm.page, bprm.p, 0);
}
/*
* Splice in (1) the interpreter's name for argv[0]
* (2) (optional) argument to interpreter
* (3) filename of shell script
*
* This is done in reverse order, because of how the
* user environment and arguments are stored.
*/
bprm.p = copy_strings(1, &bprm.filename, bprm.page, bprm.p, 2);
bprm.argc++;
if (i_arg) {
bprm.p = copy_strings(1, &i_arg, bprm.page, bprm.p, 2);
bprm.argc++;
}
bprm.p = copy_strings(1, &i_name, bprm.page, bprm.p, 2);
bprm.argc++;
if (!bprm.p) {
retval = -E2BIG;
goto exec_error1;
}
/*
* OK, now restart the process with the interpreter's inode.
* Note that we use open_namei() as the name is now in kernel
* space, and we don't need to copy it.
*/
retval = open_namei(interp, 0, 0, &bprm.inode, NULL);
if (retval)
goto exec_error1;
goto restart_interp;
}
if (!sh_bang) {
bprm.p = copy_strings(bprm.envc,envp,bprm.page,bprm.p,0);
bprm.p = copy_strings(bprm.argc,argv,bprm.page,bprm.p,0);
if (!bprm.p) {
retval = -E2BIG;
goto exec_error2;
}
}
bprm.sh_bang = sh_bang;
for (fmt = formats ; fmt ; fmt = fmt->next) {
int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
if (!fn)
break;
retval = fn(&bprm, regs);
if (retval >= 0) {
iput(bprm.inode);
current->did_exec = 1;
return retval;
}
if (retval != -ENOEXEC)
break;
}
exec_error2:
iput(bprm.inode);
exec_error1:
for (i=0 ; i<MAX_ARG_PAGES ; i++)
free_page(bprm.page[i]);
return(retval);
}
static void set_brk(unsigned long start, unsigned long end)
{
start = PAGE_ALIGN(start);
end = PAGE_ALIGN(end);
if (end <= start)
return;
do_mmap(NULL, start, end - start,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_FIXED | MAP_PRIVATE, 0);
}
/*
* These are the functions used to load a.out style executables and shared
* libraries. There is no binary dependent code anywhere else.
*/
static int load_aout_binary(struct linux_binprm * bprm, struct pt_regs * regs)
{
struct exec ex;
struct file * file;
int fd, error;
unsigned long p = bprm->p;
unsigned long fd_offset;
ex = *((struct exec *) bprm->buf); /* exec-header */
if ((N_MAGIC(ex) != ZMAGIC && N_MAGIC(ex) != OMAGIC &&
N_MAGIC(ex) != QMAGIC) ||
ex.a_trsize || ex.a_drsize ||
bprm->inode->i_size < ex.a_text+ex.a_data+ex.a_syms+N_TXTOFF(ex)) {
return -ENOEXEC;
}
current->personality = PER_LINUX;
fd_offset = N_TXTOFF(ex);
if (N_MAGIC(ex) == ZMAGIC && fd_offset != BLOCK_SIZE) {
printk(KERN_NOTICE "N_TXTOFF != BLOCK_SIZE. See a.out.h.\n");
return -ENOEXEC;
}
if (N_MAGIC(ex) == ZMAGIC && ex.a_text &&
(fd_offset < bprm->inode->i_sb->s_blocksize)) {
printk(KERN_NOTICE "N_TXTOFF < BLOCK_SIZE. Please convert binary.\n");
return -ENOEXEC;
}
/* OK, This is the point of no return */
flush_old_exec(bprm);
current->mm->brk = ex.a_bss +
(current->mm->start_brk =
(current->mm->end_data = ex.a_data +
(current->mm->end_code = ex.a_text +
(current->mm->start_code = N_TXTADDR(ex)))));
current->mm->rss = 0;
current->mm->mmap = NULL;
current->suid = current->euid = current->fsuid = bprm->e_uid;
current->sgid = current->egid = current->fsgid = bprm->e_gid;
if (N_MAGIC(ex) == OMAGIC) {
do_mmap(NULL, 0, ex.a_text+ex.a_data,
PROT_READ|PROT_WRITE|PROT_EXEC,
MAP_FIXED|MAP_PRIVATE, 0);
read_exec(bprm->inode, 32, (char *) 0, ex.a_text+ex.a_data);
} else {
if (ex.a_text & 0xfff || ex.a_data & 0xfff)
printk(KERN_NOTICE "executable not page aligned\n");
fd = open_inode(bprm->inode, O_RDONLY);
if (fd < 0)
return fd;
file = current->files->fd[fd];
if (!file->f_op || !file->f_op->mmap) {
sys_close(fd);
do_mmap(NULL, 0, ex.a_text+ex.a_data,
PROT_READ|PROT_WRITE|PROT_EXEC,
MAP_FIXED|MAP_PRIVATE, 0);
read_exec(bprm->inode, fd_offset,
(char *) N_TXTADDR(ex), ex.a_text+ex.a_data);
goto beyond_if;
}
error = do_mmap(file, N_TXTADDR(ex), ex.a_text,
PROT_READ | PROT_EXEC,
MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE,
fd_offset);
if (error != N_TXTADDR(ex)) {
sys_close(fd);
send_sig(SIGKILL, current, 0);
return error;
}
error = do_mmap(file, N_TXTADDR(ex) + ex.a_text, ex.a_data,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE,
fd_offset + ex.a_text);
sys_close(fd);
if (error != N_TXTADDR(ex) + ex.a_text) {
send_sig(SIGKILL, current, 0);
return error;
}
}
beyond_if:
if (current->exec_domain && current->exec_domain->use_count)
(*current->exec_domain->use_count)--;
if (current->binfmt && current->binfmt->use_count)
(*current->binfmt->use_count)--;
current->exec_domain = lookup_exec_domain(current->personality);
current->binfmt = &aout_format;
if (current->exec_domain && current->exec_domain->use_count)
(*current->exec_domain->use_count)++;
if (current->binfmt && current->binfmt->use_count)
(*current->binfmt->use_count)++;
set_brk(current->mm->start_brk, current->mm->brk);
p += setup_arg_pages(ex.a_text,bprm->page);
p -= MAX_ARG_PAGES*PAGE_SIZE;
p = (unsigned long)create_tables((char *)p,
bprm->argc, bprm->envc,
current->personality != PER_LINUX);
current->mm->start_stack = p;
start_thread(regs, ex.a_entry, p);
if (current->flags & PF_PTRACED)
send_sig(SIGTRAP, current, 0);
return 0;
}
static int load_aout_library(int fd)
{
struct file * file;
struct exec ex;
struct inode * inode;
unsigned int len;
unsigned int bss;
unsigned int start_addr;
int error;
file = current->files->fd[fd];
inode = file->f_inode;
set_fs(KERNEL_DS);
if (file->f_op->read(inode, file, (char *) &ex, sizeof(ex)) != sizeof(ex)) {
return -EACCES;
}
set_fs(USER_DS);
/* We come in here for the regular a.out style of shared libraries */
if ((N_MAGIC(ex) != ZMAGIC && N_MAGIC(ex) != QMAGIC) || ex.a_trsize ||
ex.a_drsize || ((ex.a_entry & 0xfff) && N_MAGIC(ex) == ZMAGIC) ||
inode->i_size < ex.a_text+ex.a_data+ex.a_syms+N_TXTOFF(ex)) {
return -ENOEXEC;
}
if (N_MAGIC(ex) == ZMAGIC && N_TXTOFF(ex) &&
(N_TXTOFF(ex) < inode->i_sb->s_blocksize)) {
printk("N_TXTOFF < BLOCK_SIZE. Please convert library\n");
return -ENOEXEC;
}
if (N_FLAGS(ex)) return -ENOEXEC;
/* For QMAGIC, the starting address is 0x20 into the page. We mask
this off to get the starting address for the page */
start_addr = ex.a_entry & 0xfffff000;
/* Now use mmap to map the library into memory. */
error = do_mmap(file, start_addr, ex.a_text + ex.a_data,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
N_TXTOFF(ex));
if (error != start_addr)
return error;
len = PAGE_ALIGN(ex.a_text + ex.a_data);
bss = ex.a_text + ex.a_data + ex.a_bss;
if (bss > len)
do_mmap(NULL, start_addr + len, bss-len,
PROT_READ|PROT_WRITE|PROT_EXEC,
MAP_PRIVATE|MAP_FIXED, 0);
return 0;
}