Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
/* Machine-dependent ELF dynamic relocation inline functions.  x86-64 version.
   Copyright (C) 2001-2024 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <https://www.gnu.org/licenses/>.  */

#ifndef dl_machine_h
#define dl_machine_h

#define ELF_MACHINE_NAME "x86_64"

#include <assert.h>
#include <stdint.h>
#include <sys/param.h>
#include <sysdep.h>
#include <tls.h>
#include <dl-tlsdesc.h>
#include <dl-static-tls.h>
#include <dl-machine-rel.h>
#include <isa-level.h>
#ifdef __CET__
# include <dl-cet.h>
#else
# define RTLD_START_ENABLE_X86_FEATURES
#endif

/* Translate a processor specific dynamic tag to the index in l_info array.  */
#define DT_X86_64(x) (DT_X86_64_##x - DT_LOPROC + DT_NUM)

/* Return nonzero iff ELF header is compatible with the running host.  */
static inline int __attribute__ ((unused))
elf_machine_matches_host (const ElfW(Ehdr) *ehdr)
{
  return ehdr->e_machine == EM_X86_64;
}


/* Return the run-time load address of the shared object.  */
static inline ElfW(Addr) __attribute__ ((unused))
elf_machine_load_address (void)
{
  extern const ElfW(Ehdr) __ehdr_start attribute_hidden;
  return (ElfW(Addr)) &__ehdr_start;
}

/* Return the link-time address of _DYNAMIC.  */
static inline ElfW(Addr) __attribute__ ((unused))
elf_machine_dynamic (void)
{
  extern ElfW(Dyn) _DYNAMIC[] attribute_hidden;
  return (ElfW(Addr)) _DYNAMIC - elf_machine_load_address ();
}

/* Set up the loaded object described by L so its unrelocated PLT
   entries will jump to the on-demand fixup code in dl-runtime.c.  */

static inline int __attribute__ ((unused, always_inline))
elf_machine_runtime_setup (struct link_map *l, struct r_scope_elem *scope[],
			   int lazy, int profile)
{
  Elf64_Addr *got;
  extern void _dl_runtime_profile_sse (ElfW(Word)) attribute_hidden;
  extern void _dl_runtime_profile_avx (ElfW(Word)) attribute_hidden;
  extern void _dl_runtime_profile_avx512 (ElfW(Word)) attribute_hidden;

  if (l->l_info[DT_JMPREL] && lazy)
    {
      /* The GOT entries for functions in the PLT have not yet been filled
	 in.  Their initial contents will arrange when called to push an
	 offset into the .rel.plt section, push _GLOBAL_OFFSET_TABLE_[1],
	 and then jump to _GLOBAL_OFFSET_TABLE_[2].  */
      got = (Elf64_Addr *) D_PTR (l, l_info[DT_PLTGOT]);
      /* If a library is prelinked but we have to relocate anyway,
	 we have to be able to undo the prelinking of .got.plt.
	 The prelinker saved us here address of .plt + 0x16.  */
      if (got[1])
	{
	  l->l_mach.plt = got[1] + l->l_addr;
	  l->l_mach.gotplt = (ElfW(Addr)) &got[3];
	}
      /* Identify this shared object.  */
      *(ElfW(Addr) *) (got + 1) = (ElfW(Addr)) l;

#ifdef SHARED
      /* The got[2] entry contains the address of a function which gets
	 called to get the address of a so far unresolved function and
	 jump to it.  The profiling extension of the dynamic linker allows
	 to intercept the calls to collect information.  In this case we
	 don't store the address in the GOT so that all future calls also
	 end in this function.  */
      if (__glibc_unlikely (profile))
	{
	  const struct cpu_features* cpu_features = __get_cpu_features ();
	  if (X86_ISA_CPU_FEATURE_USABLE_P (cpu_features, AVX512F))
	    *(ElfW(Addr) *) (got + 2) = (ElfW(Addr)) &_dl_runtime_profile_avx512;
	  else if (X86_ISA_CPU_FEATURE_USABLE_P (cpu_features, AVX))
	    *(ElfW(Addr) *) (got + 2) = (ElfW(Addr)) &_dl_runtime_profile_avx;
	  else
	    *(ElfW(Addr) *) (got + 2) = (ElfW(Addr)) &_dl_runtime_profile_sse;

	  if (GLRO(dl_profile) != NULL
	      && _dl_name_match_p (GLRO(dl_profile), l))
	    /* This is the object we are looking for.  Say that we really
	       want profiling and the timers are started.  */
	    GL(dl_profile_map) = l;
	}
      else
#endif
	{
	  /* This function will get called to fix up the GOT entry
	     indicated by the offset on the stack, and then jump to
	     the resolved address.  */
	  *(ElfW(Addr) *) (got + 2)
	    = (ElfW(Addr)) GLRO(dl_x86_64_runtime_resolve);
	}
    }

  return lazy;
}

/* Initial entry point code for the dynamic linker.
   The C function `_dl_start' is the real entry point;
   its return value is the user program's entry point.  */
#define RTLD_START asm ("\n\
.text\n\
	.align 16\n\
.globl _start\n\
.globl _dl_start_user\n\
_start:\n\
	movq %rsp, %rdi\n\
	call _dl_start\n\
_dl_start_user:\n\
	# Save the user entry point address in %r12.\n\
	movq %rax, %r12\n\
	# Save %rsp value in %r13.\n\
	movq %rsp, %r13\n\
"\
	RTLD_START_ENABLE_X86_FEATURES \
"\
	# Read the original argument count.\n\
	movq (%rsp), %rdx\n\
	# Call _dl_init (struct link_map *main_map, int argc, char **argv, char **env)\n\
	# argc -> rsi\n\
	movq %rdx, %rsi\n\
	# And align stack for the _dl_init call. \n\
	andq $-16, %rsp\n\
	# _dl_loaded -> rdi\n\
	movq _rtld_local(%rip), %rdi\n\
	# env -> rcx\n\
	leaq 16(%r13,%rdx,8), %rcx\n\
	# argv -> rdx\n\
	leaq 8(%r13), %rdx\n\
	# Clear %rbp to mark outermost frame obviously even for constructors.\n\
	xorl %ebp, %ebp\n\
	# Call the function to run the initializers.\n\
	call _dl_init\n\
	# Pass our finalizer function to the user in %rdx, as per ELF ABI.\n\
	leaq _dl_fini(%rip), %rdx\n\
	# And make sure %rsp points to argc stored on the stack.\n\
	movq %r13, %rsp\n\
	# Jump to the user's entry point.\n\
	jmp *%r12\n\
.previous\n\
");

/* ELF_RTYPE_CLASS_PLT iff TYPE describes relocation of a PLT entry or
   TLS variable, so undefined references should not be allowed to
   define the value.
   ELF_RTYPE_CLASS_COPY iff TYPE should not be allowed to resolve to one
   of the main executable's symbols, as for a COPY reloc.  */
#define elf_machine_type_class(type)					      \
  ((((type) == R_X86_64_JUMP_SLOT					      \
     || (type) == R_X86_64_DTPMOD64					      \
     || (type) == R_X86_64_DTPOFF64					      \
     || (type) == R_X86_64_TPOFF64					      \
     || (type) == R_X86_64_TLSDESC)					      \
    * ELF_RTYPE_CLASS_PLT)						      \
   | (((type) == R_X86_64_COPY) * ELF_RTYPE_CLASS_COPY))

/* A reloc type used for ld.so cmdline arg lookups to reject PLT entries.  */
#define ELF_MACHINE_JMP_SLOT	R_X86_64_JUMP_SLOT

/* The relative ifunc relocation.  */
// XXX This is a work-around for a broken linker.  Remove!
#define ELF_MACHINE_IRELATIVE	R_X86_64_IRELATIVE

/* We define an initialization function.  This is called very early in
   _dl_sysdep_start.  */
#define DL_PLATFORM_INIT dl_platform_init ()

static inline void __attribute__ ((unused))
dl_platform_init (void)
{
#if IS_IN (rtld)
  /* _dl_x86_init_cpu_features is a wrapper for init_cpu_features which
     has been called early from __libc_start_main in static executable.  */
  _dl_x86_init_cpu_features ();
#else
  if (GLRO(dl_platform) != NULL && *GLRO(dl_platform) == '\0')
    /* Avoid an empty string which would disturb us.  */
    GLRO(dl_platform) = NULL;
#endif
}

static inline ElfW(Addr)
elf_machine_fixup_plt (struct link_map *map, lookup_t t,
		       const ElfW(Sym) *refsym, const ElfW(Sym) *sym,
		       const ElfW(Rela) *reloc,
		       ElfW(Addr) *reloc_addr, ElfW(Addr) value)
{
  return *reloc_addr = value;
}

/* Return the final value of a PLT relocation.  On x86-64 the
   JUMP_SLOT relocation ignores the addend.  */
static inline ElfW(Addr)
elf_machine_plt_value (struct link_map *map, const ElfW(Rela) *reloc,
		       ElfW(Addr) value)
{
  return value;
}


/* Names of the architecture-specific auditing callback functions.  */
#define ARCH_LA_PLTENTER x86_64_gnu_pltenter
#define ARCH_LA_PLTEXIT x86_64_gnu_pltexit

#endif /* !dl_machine_h */

#ifdef RESOLVE_MAP

/* Perform the relocation specified by RELOC and SYM (which is fully resolved).
   MAP is the object containing the reloc.  */

static inline void __attribute__((always_inline))
elf_machine_rela (struct link_map *map, struct r_scope_elem *scope[],
		  const ElfW(Rela) *reloc, const ElfW(Sym) *sym,
		  const struct r_found_version *version,
		  void *const reloc_addr_arg, int skip_ifunc)
{
  ElfW(Addr) *const reloc_addr = reloc_addr_arg;
  const unsigned long int r_type = ELFW(R_TYPE) (reloc->r_info);

# if !defined RTLD_BOOTSTRAP
  if (__glibc_unlikely (r_type == R_X86_64_RELATIVE))
    *reloc_addr = map->l_addr + reloc->r_addend;
  else
# endif
# if !defined RTLD_BOOTSTRAP
  /* l_addr + r_addend may be > 0xffffffff and R_X86_64_RELATIVE64
     relocation updates the whole 64-bit entry.  */
  if (__glibc_unlikely (r_type == R_X86_64_RELATIVE64))
    *(Elf64_Addr *) reloc_addr = (Elf64_Addr) map->l_addr + reloc->r_addend;
  else
# endif
  if (__glibc_unlikely (r_type == R_X86_64_NONE))
    return;
  else
    {
# ifndef RTLD_BOOTSTRAP
      const ElfW(Sym) *const refsym = sym;
# endif
      struct link_map *sym_map = RESOLVE_MAP (map, scope, &sym, version,
					      r_type);
      ElfW(Addr) value = SYMBOL_ADDRESS (sym_map, sym, true);

      if (sym != NULL
	  && __glibc_unlikely (ELFW(ST_TYPE) (sym->st_info) == STT_GNU_IFUNC)
	  && __glibc_likely (sym->st_shndx != SHN_UNDEF)
	  && __glibc_likely (!skip_ifunc))
	{
# ifndef RTLD_BOOTSTRAP
	  if (sym_map != map
	      && !sym_map->l_relocated)
	    {
	      const char *strtab
		= (const char *) D_PTR (map, l_info[DT_STRTAB]);
	      if (sym_map->l_type == lt_executable)
		_dl_fatal_printf ("\
%s: IFUNC symbol '%s' referenced in '%s' is defined in the executable \
and creates an unsatisfiable circular dependency.\n",
				  RTLD_PROGNAME, strtab + refsym->st_name,
				  map->l_name);
	      else
		_dl_error_printf ("\
%s: Relink `%s' with `%s' for IFUNC symbol `%s'\n",
				  RTLD_PROGNAME, map->l_name,
				  sym_map->l_name,
				  strtab + refsym->st_name);
	    }
# endif
	  value = ((ElfW(Addr) (*) (void)) value) ();
	}

      switch (r_type)
	{
	case R_X86_64_JUMP_SLOT:
	  map->l_has_jump_slot_reloc = true;
	  /* fallthrough */
	case R_X86_64_GLOB_DAT:
	  *reloc_addr = value;
	  break;

# ifndef RTLD_BOOTSTRAP
#  ifdef __ILP32__
	case R_X86_64_SIZE64:
	  /* Set to symbol size plus addend.  */
	  *(Elf64_Addr *) (uintptr_t) reloc_addr
	    = (Elf64_Addr) sym->st_size + reloc->r_addend;
	  break;

	case R_X86_64_SIZE32:
#  else
	case R_X86_64_SIZE64:
#  endif
	  /* Set to symbol size plus addend.  */
	  value = sym->st_size;
	  *reloc_addr = value + reloc->r_addend;
	  break;

	case R_X86_64_DTPMOD64:
	  /* Get the information from the link map returned by the
	     resolve function.  */
	  if (sym_map != NULL)
	    *reloc_addr = sym_map->l_tls_modid;
	  break;
	case R_X86_64_DTPOFF64:
	  /* During relocation all TLS symbols are defined and used.
	     Therefore the offset is already correct.  */
	  if (sym != NULL)
	    {
	      value = sym->st_value + reloc->r_addend;
#  ifdef __ILP32__
	      /* This relocation type computes a signed offset that is
		 usually negative.  The symbol and addend values are 32
		 bits but the GOT entry is 64 bits wide and the whole
		 64-bit entry is used as a signed quantity, so we need
		 to sign-extend the computed value to 64 bits.  */
	      *(Elf64_Sxword *) reloc_addr = (Elf64_Sxword) (Elf32_Sword) value;
#  else
	      *reloc_addr = value;
#  endif
	    }
	  break;
	case R_X86_64_TLSDESC:
	  {
	    struct tlsdesc volatile *td =
	      (struct tlsdesc volatile *)reloc_addr;

	    if (! sym)
	      {
		td->arg = (void*)reloc->r_addend;
		td->entry = _dl_tlsdesc_undefweak;
	      }
	    else
	      {
#  ifndef SHARED
		CHECK_STATIC_TLS (map, sym_map);
#  else
		if (!TRY_STATIC_TLS (map, sym_map))
		  {
		    td->arg = _dl_make_tlsdesc_dynamic
		      (sym_map, sym->st_value + reloc->r_addend);
		    td->entry = GLRO(dl_x86_tlsdesc_dynamic);
		  }
		else
#  endif
		  {
		    td->arg = (void*)(sym->st_value - sym_map->l_tls_offset
				      + reloc->r_addend);
		    td->entry = _dl_tlsdesc_return;
		  }
	      }
	    break;
	  }
	case R_X86_64_TPOFF64:
	  /* The offset is negative, forward from the thread pointer.  */
	  if (sym != NULL)
	    {
	      CHECK_STATIC_TLS (map, sym_map);
	      /* We know the offset of the object the symbol is contained in.
		 It is a negative value which will be added to the
		 thread pointer.  */
	      value = (sym->st_value + reloc->r_addend
		       - sym_map->l_tls_offset);
# ifdef __ILP32__
	      /* The symbol and addend values are 32 bits but the GOT
		 entry is 64 bits wide and the whole 64-bit entry is used
		 as a signed quantity, so we need to sign-extend the
		 computed value to 64 bits.  */
	      *(Elf64_Sxword *) reloc_addr = (Elf64_Sxword) (Elf32_Sword) value;
# else
	      *reloc_addr = value;
# endif
	    }
	  break;

	case R_X86_64_64:
	  /* value + r_addend may be > 0xffffffff and R_X86_64_64
	     relocation updates the whole 64-bit entry.  */
	  *(Elf64_Addr *) reloc_addr = (Elf64_Addr) value + reloc->r_addend;
	  break;
#  ifndef __ILP32__
	case R_X86_64_SIZE32:
	  /* Set to symbol size plus addend.  */
	  value = sym->st_size;
#  endif
	  /* Fall through.  */
	case R_X86_64_32:
	  value += reloc->r_addend;
	  *(unsigned int *) reloc_addr = value;

	  const char *fmt;
	  if (__glibc_unlikely (value > UINT_MAX))
	    {
	      const char *strtab;

	      fmt = "\
%s: Symbol `%s' causes overflow in R_X86_64_32 relocation\n";
	    print_err:
	      strtab = (const char *) D_PTR (map, l_info[DT_STRTAB]);

	      _dl_error_printf (fmt, RTLD_PROGNAME, strtab + refsym->st_name);
	    }
	  break;
	  /* Not needed for dl-conflict.c.  */
	case R_X86_64_PC32:
	  value += reloc->r_addend - (ElfW(Addr)) reloc_addr;
	  *(unsigned int *) reloc_addr = value;
	  if (__glibc_unlikely (value != (int) value))
	    {
	      fmt = "\
%s: Symbol `%s' causes overflow in R_X86_64_PC32 relocation\n";
	      goto print_err;
	    }
	  break;
	case R_X86_64_COPY:
	  if (sym == NULL)
	    /* This can happen in trace mode if an object could not be
	       found.  */
	    break;
	  memcpy (reloc_addr_arg, (void *) value,
		  MIN (sym->st_size, refsym->st_size));
	  if (__glibc_unlikely (sym->st_size > refsym->st_size)
	      || (__glibc_unlikely (sym->st_size < refsym->st_size)
		  && GLRO(dl_verbose)))
	    {
	      fmt = "\
%s: Symbol `%s' has different size in shared object, consider re-linking\n";
	      goto print_err;
	    }
	  break;
	case R_X86_64_IRELATIVE:
	  value = map->l_addr + reloc->r_addend;
	  if (__glibc_likely (!skip_ifunc))
	    value = ((ElfW(Addr) (*) (void)) value) ();
	  *reloc_addr = value;
	  break;
	default:
	  _dl_reloc_bad_type (map, r_type, 0);
	  break;
# endif /* !RTLD_BOOTSTRAP */
	}
    }
}

static inline void
__attribute ((always_inline))
elf_machine_rela_relative (ElfW(Addr) l_addr, const ElfW(Rela) *reloc,
			   void *const reloc_addr_arg)
{
  ElfW(Addr) *const reloc_addr = reloc_addr_arg;
#if !defined RTLD_BOOTSTRAP
  /* l_addr + r_addend may be > 0xffffffff and R_X86_64_RELATIVE64
     relocation updates the whole 64-bit entry.  */
  if (__glibc_unlikely (ELFW(R_TYPE) (reloc->r_info) == R_X86_64_RELATIVE64))
    *(Elf64_Addr *) reloc_addr = (Elf64_Addr) l_addr + reloc->r_addend;
  else
#endif
    {
      assert (ELFW(R_TYPE) (reloc->r_info) == R_X86_64_RELATIVE);
      *reloc_addr = l_addr + reloc->r_addend;
    }
}

static inline void
__attribute ((always_inline))
elf_machine_lazy_rel (struct link_map *map, struct r_scope_elem *scope[],
		      ElfW(Addr) l_addr, const ElfW(Rela) *reloc,
		      int skip_ifunc)
{
  ElfW(Addr) *const reloc_addr = (void *) (l_addr + reloc->r_offset);
  const unsigned long int r_type = ELFW(R_TYPE) (reloc->r_info);

  /* Check for unexpected PLT reloc type.  */
  if (__glibc_likely (r_type == R_X86_64_JUMP_SLOT))
    {
      /* Prelink has been deprecated.  */
      if (__glibc_likely (map->l_mach.plt == 0))
	*reloc_addr += l_addr;
      else
	*reloc_addr =
	  map->l_mach.plt
	  + (((ElfW(Addr)) reloc_addr) - map->l_mach.gotplt) * 2;
    }
  else if (__glibc_likely (r_type == R_X86_64_TLSDESC))
    {
      const Elf_Symndx symndx = ELFW (R_SYM) (reloc->r_info);
      const ElfW (Sym) *symtab = (const void *)D_PTR (map, l_info[DT_SYMTAB]);
      const ElfW (Sym) *sym = &symtab[symndx];
      const struct r_found_version *version = NULL;

      if (map->l_info[VERSYMIDX (DT_VERSYM)] != NULL)
	{
	  const ElfW (Half) *vernum =
	    (const void *)D_PTR (map, l_info[VERSYMIDX (DT_VERSYM)]);
	  version = &map->l_versions[vernum[symndx] & 0x7fff];
	}

      /* Always initialize TLS descriptors completely at load time, in
	 case static TLS is allocated for it that requires locking.  */
      elf_machine_rela (map, scope, reloc, sym, version, reloc_addr, skip_ifunc);
    }
  else if (__glibc_unlikely (r_type == R_X86_64_IRELATIVE))
    {
      ElfW(Addr) value = map->l_addr + reloc->r_addend;
      if (__glibc_likely (!skip_ifunc))
	value = ((ElfW(Addr) (*) (void)) value) ();
      *reloc_addr = value;
    }
  else
    _dl_reloc_bad_type (map, r_type, 1);
}

#endif /* RESOLVE_MAP */

#if !defined ELF_DYNAMIC_AFTER_RELOC && !defined RTLD_BOOTSTRAP \
    && defined SHARED
# define ELF_DYNAMIC_AFTER_RELOC(map, lazy) \
  x86_64_dynamic_after_reloc (map, (lazy))

# define JMP32_INSN_OPCODE	0xe9
# define JMP32_INSN_SIZE	5
# define JMPABS_INSN_OPCODE	0xa100d5
# define JMPABS_INSN_SIZE	11
# define INT3_INSN_OPCODE	0xcc

static const char *
x86_64_reloc_symbol_name (struct link_map *map, const ElfW(Rela) *reloc)
{
  const ElfW(Sym) *const symtab
    = (const void *) map->l_info[DT_SYMTAB]->d_un.d_ptr;
  const ElfW(Sym) *const refsym = &symtab[ELFW (R_SYM) (reloc->r_info)];
  const char *strtab = (const char *) map->l_info[DT_STRTAB]->d_un.d_ptr;
  return strtab + refsym->st_name;
}

static void
x86_64_rewrite_plt (struct link_map *map, ElfW(Addr) plt_rewrite)
{
  ElfW(Addr) l_addr = map->l_addr;
  ElfW(Addr) pltent = map->l_info[DT_X86_64 (PLTENT)]->d_un.d_val;
  ElfW(Addr) start = map->l_info[DT_JMPREL]->d_un.d_ptr;
  ElfW(Addr) size = map->l_info[DT_PLTRELSZ]->d_un.d_val;
  const ElfW(Rela) *reloc = (const void *) start;
  const ElfW(Rela) *reloc_end = (const void *) (start + size);

# ifdef __CET__
  bool ibt_enabled_p = dl_cet_ibt_enabled ();
# else
  bool ibt_enabled_p = false;
# endif

  if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_FILES))
    _dl_debug_printf ("\nchanging PLT in '%s' to direct branch\n",
		      DSO_FILENAME (map->l_name));

  for (; reloc < reloc_end; reloc++)
    if (ELFW(R_TYPE) (reloc->r_info) == R_X86_64_JUMP_SLOT)
      {
	/* Get the value from the GOT entry.  */
	ElfW(Addr) value = *(ElfW(Addr) *) (l_addr + reloc->r_offset);

	/* Get the corresponding PLT entry from r_addend.  */
	ElfW(Addr) branch_start = l_addr + reloc->r_addend;
	/* Skip ENDBR64 if IBT isn't enabled.  */
	if (!ibt_enabled_p)
	  branch_start = ALIGN_DOWN (branch_start, pltent);
	/* Get the displacement from the branch target.  NB: We must use
	   64-bit integer on x32 to avoid overflow.  */
	uint64_t disp = (uint64_t) value - branch_start - JMP32_INSN_SIZE;
	ElfW(Addr) plt_end;
	ElfW(Addr) pad;

	plt_end = (branch_start | (pltent - 1)) + 1;

	/* Update the PLT entry.  */
	if (((uint64_t) disp + (uint64_t) ((uint32_t) INT32_MIN))
	    <= (uint64_t) UINT32_MAX)
	  {
	    pad = branch_start + JMP32_INSN_SIZE;

	    if (__glibc_unlikely (pad > plt_end))
	      continue;

	    /* If the target branch can be reached with a direct branch,
	       rewrite the PLT entry with a direct branch.  */
	    if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_BINDINGS))
	      {
		const char *sym_name = x86_64_reloc_symbol_name (map,
								 reloc);
		_dl_debug_printf ("changing '%s' PLT entry in '%s' to "
				  "direct branch\n", sym_name,
				  DSO_FILENAME (map->l_name));
	      }

	    /* Write out direct branch.  */
	    *(uint8_t *) branch_start = JMP32_INSN_OPCODE;
	    *(uint32_t *) (branch_start + 1) = disp;
	  }
	else
	  {
	    if (GL(dl_x86_feature_control).plt_rewrite
		!= plt_rewrite_jmpabs)
	      {
		if (__glibc_unlikely (GLRO(dl_debug_mask)
				      & DL_DEBUG_BINDINGS))
		  {
		    const char *sym_name
		      = x86_64_reloc_symbol_name (map, reloc);
		    _dl_debug_printf ("skipping '%s' PLT entry in '%s'\n",
				      sym_name,
				      DSO_FILENAME (map->l_name));
		  }
		continue;
	      }

	    pad = branch_start + JMPABS_INSN_SIZE;

	    if (__glibc_unlikely (pad > plt_end))
	      continue;

	    /* Rewrite the PLT entry with JMPABS.  */
	    if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_BINDINGS))
	      {
		const char *sym_name = x86_64_reloc_symbol_name (map,
								 reloc);
		_dl_debug_printf ("changing '%s' PLT entry in '%s' to "
				  "JMPABS\n", sym_name,
				  DSO_FILENAME (map->l_name));
	      }

	    /* "jmpabs $target" for 64-bit displacement.  NB: JMPABS has
	       a 3-byte opcode + 64bit address.  There is a 1-byte overlap
	       between 4-byte write and 8-byte write.  */
	    *(uint32_t *) (branch_start) = JMPABS_INSN_OPCODE;
	    *(uint64_t *) (branch_start + 3) = value;
	  }

	/* Fill the unused part of the PLT entry with INT3.  */
	for (; pad < plt_end; pad++)
	  *(uint8_t *) pad = INT3_INSN_OPCODE;
      }
}

static inline void
x86_64_rewrite_plt_in_place (struct link_map *map)
{
  /* Adjust DT_X86_64_PLT address and DT_X86_64_PLTSZ values.  */
  ElfW(Addr) plt = (map->l_info[DT_X86_64 (PLT)]->d_un.d_ptr
		    + map->l_addr);
  size_t pagesize = GLRO(dl_pagesize);
  ElfW(Addr) plt_aligned = ALIGN_DOWN (plt, pagesize);
  size_t pltsz = (map->l_info[DT_X86_64 (PLTSZ)]->d_un.d_val
		  + plt - plt_aligned);

  if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_FILES))
    _dl_debug_printf ("\nchanging PLT in '%s' to writable\n",
		      DSO_FILENAME (map->l_name));

  if (__glibc_unlikely (__mprotect ((void *) plt_aligned, pltsz,
				    PROT_WRITE | PROT_READ) < 0))
    {
      if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_FILES))
	_dl_debug_printf ("\nfailed to change PLT in '%s' to writable\n",
			  DSO_FILENAME (map->l_name));
      return;
    }

  x86_64_rewrite_plt (map, plt_aligned);

  if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_FILES))
    _dl_debug_printf ("\nchanging PLT in '%s' back to read-only\n",
		      DSO_FILENAME (map->l_name));

  if (__glibc_unlikely (__mprotect ((void *) plt_aligned, pltsz,
				    PROT_EXEC | PROT_READ) < 0))
    _dl_signal_error (0, DSO_FILENAME (map->l_name), NULL,
		      "failed to change PLT back to read-only");
}

/* Rewrite PLT entries to direct branch if possible.  */

static inline void
x86_64_dynamic_after_reloc (struct link_map *map, int lazy)
{
  /* Ignore DT_X86_64_PLT if the lazy binding is enabled.  */
  if (lazy != 0)
    return;

  /* Ignore DT_X86_64_PLT if PLT rewrite isn't enabled.  */
  if (__glibc_likely (GL(dl_x86_feature_control).plt_rewrite
		      == plt_rewrite_none))
    return;

  if (__glibc_likely (map->l_info[DT_X86_64 (PLT)] == NULL))
    return;

  /* Ignore DT_X86_64_PLT if there is no R_X86_64_JUMP_SLOT.  */
  if (map->l_has_jump_slot_reloc == 0)
    return;

  /* Ignore DT_X86_64_PLT if
     1. DT_JMPREL isn't available or its value is 0.
     2. DT_PLTRELSZ is 0.
     3. DT_X86_64_PLTENT isn't available or its value is smaller than
	16 bytes.
     4. DT_X86_64_PLTSZ isn't available or its value is smaller than
	DT_X86_64_PLTENT's value or isn't a multiple of DT_X86_64_PLTENT's
	value.  */
  if (map->l_info[DT_JMPREL] == NULL
      || map->l_info[DT_JMPREL]->d_un.d_ptr == 0
      || map->l_info[DT_PLTRELSZ]->d_un.d_val == 0
      || map->l_info[DT_X86_64 (PLTSZ)] == NULL
      || map->l_info[DT_X86_64 (PLTENT)] == NULL
      || map->l_info[DT_X86_64 (PLTENT)]->d_un.d_val < 16
      || (map->l_info[DT_X86_64 (PLTSZ)]->d_un.d_val
	  < map->l_info[DT_X86_64 (PLTENT)]->d_un.d_val)
      || (map->l_info[DT_X86_64 (PLTSZ)]->d_un.d_val
	  % map->l_info[DT_X86_64 (PLTENT)]->d_un.d_val) != 0)
    return;

  x86_64_rewrite_plt_in_place (map);
}
#endif