Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
/* SPDX-License-Identifier: GPL-2.0-only */

/*
 * Include Unit Under Test source code directly instead of linking it.
 * This will allow access to internal structures and data without having
 * to extract them to another header file.
 */
#include "../lib/imd_cbmem.c"

#include <tests/test.h>
#include <stdlib.h>
#include <string.h>
#include <commonlib/bsd/helpers.h>
#include <imd.h>
#include <cbmem.h>
#include <imd_private.h>

#include <tests/lib/imd_cbmem_data.h>

#define CBMEM_ENTRY_ID 0xA001

static void reset_imd(void)
{
	imd.lg.limit = (uintptr_t)NULL;
	imd.lg.r = NULL;
	imd.sm.limit = (uintptr_t)NULL;
	imd.sm.r = NULL;

	cbmem_initialized = 0;
}

/* This implementation allows imd_cbmem module tests without linking lib/cbmem_common.c
   Function indicates to each hook if cbmem is being recovered or not. */
void cbmem_run_init_hooks(int is_recovery)
{
	function_called();
}

uintptr_t cbmem_top_chipset(void)
{
	return _cbmem_top_ptr;
}

static void *get_cbmem_ptr(void)
{
	void *cbmem_top_ptr = (void *)_cbmem_top_ptr;
	if (cbmem_top_ptr)
		return cbmem_top_ptr - CBMEM_SIZE;
	else
		return NULL;
}

static void clear_cbmem(void)
{
	void *ptr = get_cbmem_ptr();
	if (ptr)
		memset(ptr, 0, CBMEM_SIZE);
}

static void reset_and_clear_cbmem(void)
{
	reset_imd();
	clear_cbmem();
}

void prepare_simple_cbmem(void)
{
	reset_and_clear_cbmem();

	expect_function_call(cbmem_run_init_hooks);
	cbmem_initialize_empty();

	cbmem_entry_add(CBMEM_ENTRY_1_ID, CBMEM_ENTRY_1_SIZE);
	cbmem_entry_add(CBMEM_ENTRY_2_ID, CBMEM_ENTRY_2_SIZE);

	cbmem_entry_add(CBMEM_ENTRY_SM_1_ID, CBMEM_ENTRY_SM_1_SIZE);
	cbmem_entry_add(CBMEM_ENTRY_SM_2_ID, CBMEM_ENTRY_SM_2_SIZE);
}

static void test_cbmem_top(void **state)
{
	cbmem_top_init_once();

	if (ENV_ROMSTAGE)
		assert_ptr_equal(cbmem_top_chipset(), cbmem_top());

	if (ENV_POSTCAR || ENV_RAMSTAGE)
		assert_ptr_equal((void *)_cbmem_top_ptr, cbmem_top());
}

static void test_cbmem_initialize_empty(void **state)
{
	const struct cbmem_entry *found;

	/* Expect clean call without recovery */
	expect_function_call(cbmem_run_init_hooks);
	cbmem_initialize_empty();

	found = cbmem_entry_find(SMALL_REGION_ID);
	assert_non_null(found);
	/* Check that cbmem has only root, large and small entry. */
	assert_int_equal(2, ((struct imd_root *)imd.lg.r)->num_entries);
	assert_int_equal(1, ((struct imd_root *)imd.sm.r)->num_entries);
}

static void test_cbmem_initialize_empty_id_size(void **state)
{
	const struct cbmem_entry *entry1, *entry2;

	expect_function_call(cbmem_run_init_hooks);
	cbmem_initialize_empty_id_size(CBMEM_ENTRY_ID, CBMEM_ROOT_SIZE);

	entry1 = cbmem_entry_find(SMALL_REGION_ID);
	entry2 = cbmem_entry_find(CBMEM_ENTRY_ID);

	assert_non_null(entry1);
	assert_non_null(entry2);
	assert_ptr_not_equal(entry1, entry2);
	/* Check that cbmem has root, large, small entries
	   and entry with id passed to init function. */
	assert_int_equal(3, ((struct imd_root *)imd.lg.r)->num_entries);
	assert_int_equal(1, ((struct imd_root *)imd.sm.r)->num_entries);
}

static void test_cbmem_initialize(void **state)
{
	int res;

	/* Expect call to fail as there is no previous cbmem to recover */
	res = cbmem_initialize();
	assert_int_equal(1, res);

	/* Create cbmem with few entries and check if initialization will recover */
	prepare_simple_cbmem();
	reset_imd();
	expect_function_call(cbmem_run_init_hooks);
	res = cbmem_initialize();
	assert_int_equal(0, res);
}

void test_cbmem_initialize_id_size_ramstage(void **state)
{
	int res;
	const struct cbmem_entry *entry1, *entry2;

	/* Expect call to fail as there is no previous cbmem to recover */
	res = cbmem_initialize_id_size(0, 0);
	assert_int_equal(1, res);

	reset_and_clear_cbmem();

	res = cbmem_initialize_id_size(CBMEM_ENTRY_ID, CBMEM_ROOT_SIZE);
	assert_int_equal(1, res);

	/* Initialize empty cbmem with small region and check if next initialization
	   correctly recovers and creates its root entry with small region */
	expect_function_call(cbmem_run_init_hooks);
	cbmem_initialize_empty_id_size(0, 0);
	expect_function_call(cbmem_run_init_hooks);
	res = cbmem_initialize_id_size(CBMEM_ENTRY_ID, CBMEM_ROOT_SIZE);
	assert_int_equal(0, res);

	entry1 = cbmem_entry_find(SMALL_REGION_ID);
	entry2 = cbmem_entry_find(CBMEM_ENTRY_ID);
	assert_non_null(entry1);
	assert_non_null(entry2);
	assert_ptr_not_equal(entry1, entry2);
	/* Check that cbmem has root, large, small entries and entry with id passed
	   to init function. */
	assert_int_equal(3, ((struct imd_root *)imd.lg.r)->num_entries);
	assert_int_equal(1, ((struct imd_root *)imd.sm.r)->num_entries);
}

void test_cbmem_initialize_id_size_romstage(void **state)
{
	int res;
	const struct cbmem_entry *entry1, *entry2;

	/* Expect call to fail as there is no previous cbmem to recover */
	res = cbmem_initialize_id_size(0, 0);
	assert_int_equal(1, res);

	/* Initialize empty cbmem with small region and check if next initialization
	   correctly recovers and creates its root entry with small region */
	expect_function_call(cbmem_run_init_hooks);
	cbmem_initialize_empty_id_size(0, 0);
	expect_function_call(cbmem_run_init_hooks);
	res = cbmem_initialize_id_size(CBMEM_ENTRY_ID, CBMEM_ROOT_SIZE);
	assert_int_equal(0, res);

	entry1 = cbmem_entry_find(SMALL_REGION_ID);
	assert_non_null(entry1);

	/* Romstage locks imd cbmem initialization after recovery,
	   so entry with CBMEM_ENTRY_ID id is not present if it was not recovered. */
	entry2 = cbmem_entry_find(CBMEM_ENTRY_ID);
	assert_null(entry2);

	/* Initialize cbmem with few large and small entries */
	prepare_simple_cbmem();

	assert_non_null(cbmem_entry_find(CBMEM_ENTRY_1_ID));
	assert_non_null(cbmem_entry_find(CBMEM_ENTRY_2_ID));
	assert_non_null(cbmem_entry_find(CBMEM_ENTRY_SM_1_ID));
	assert_non_null(cbmem_entry_find(CBMEM_ENTRY_SM_2_ID));

	reset_imd();

	expect_function_call(cbmem_run_init_hooks);
	res = cbmem_initialize_id_size(CBMEM_ENTRY_ID, CBMEM_ROOT_SIZE);
	assert_int_equal(0, res);

	/* Initialization function should be able to recover entries left in cbmem
	   while having imd structure clean */
	entry1 = cbmem_entry_find(SMALL_REGION_ID);
	assert_non_null(entry1);
	assert_non_null(cbmem_entry_find(CBMEM_ENTRY_1_ID));
	assert_non_null(cbmem_entry_find(CBMEM_ENTRY_2_ID));
	assert_non_null(cbmem_entry_find(CBMEM_ENTRY_SM_1_ID));
	assert_non_null(cbmem_entry_find(CBMEM_ENTRY_SM_2_ID));
}

static void test_cbmem_recovery(void **state)
{
	int is_wakeup = 1;

	/* Reset imd, initialize cbmem and add entries for recovery */
	prepare_simple_cbmem();
	expect_function_call(cbmem_run_init_hooks);
	assert_int_equal(0, cbmem_recovery(is_wakeup));

	/* Check that entries have been correctly recovered */
	assert_non_null(cbmem_entry_find(CBMEM_ENTRY_1_ID));
	assert_non_null(cbmem_entry_find(CBMEM_ENTRY_2_ID));
	assert_non_null(cbmem_entry_find(CBMEM_ENTRY_SM_1_ID));
	assert_non_null(cbmem_entry_find(CBMEM_ENTRY_SM_2_ID));

	is_wakeup = 0;
	expect_function_call(cbmem_run_init_hooks);
	assert_int_equal(0, cbmem_recovery(is_wakeup));

	/* Check that after recovery with is_wakeup equal to 0 the cbmem is empty
	   and in initial state. */
	assert_null(cbmem_entry_find(CBMEM_ENTRY_1_ID));
	assert_null(cbmem_entry_find(CBMEM_ENTRY_2_ID));
	assert_null(cbmem_entry_find(CBMEM_ENTRY_SM_1_ID));
	assert_null(cbmem_entry_find(CBMEM_ENTRY_SM_2_ID));
	/* Check that cbmem has root, large and small entry. */
	assert_int_equal(2, ((struct imd_root *)imd.lg.r)->num_entries);
	assert_int_equal(1, ((struct imd_root *)imd.sm.r)->num_entries);
}

static void test_cbmem_entry_add(void **state)
{
	/* IDs used for testing. Don't have to be sequential.
	   Must not be equal to SMALL_REGION_ID. */
	const int id1 = 0x10;
	const int id2 = 0x11;
	const int id3 = 0x12;
	const struct cbmem_entry *entry1, *entry2;
	const struct cbmem_entry *entry_ret2, *entry_ret3;

	/* cbmem_run_init_hooks() will be called by init functions
	   but this test does not aim to check it */
	ignore_function_calls(cbmem_run_init_hooks);

	cbmem_initialize_empty_id_size(id1, CBMEM_ROOT_SIZE);

	/* Expect NULL while looking for nonexistent entries */
	assert_null(cbmem_entry_find(id2));
	assert_null(cbmem_entry_find(id3));

	entry_ret2 = cbmem_entry_add(id2, CBMEM_ROOT_SIZE);
	/* Expect error when trying to add entry with zero size */
	assert_null(cbmem_entry_add(id3, 0));

	/* Check if entries have been added correctly and are not the same */
	entry1 = cbmem_entry_find(id1);
	entry2 = cbmem_entry_find(id2);
	assert_non_null(entry1);
	assert_non_null(entry2);
	assert_ptr_not_equal(entry1, entry2);
	assert_ptr_equal(entry_ret2, entry2);

	/* Add entry again and make sure that it has been
	   found instead of creating again. */
	entry_ret3 = cbmem_entry_add(id2, CBMEM_ROOT_SIZE / 2);
	assert_ptr_equal(entry_ret2, entry_ret3);
}

static void test_cbmem_add(void **state)
{
	const int id0 = 0x55;
	const int id1 = 0x66;
	const int id2 = 0x77;
	const int id3 = 0x88;
	const int entry1_size = 0x2000;
	const int entry2_size = 0x4d1;
	const int entry3_size = 0x30;
	void *entry1, *entry2, *entry3, *entry4;

	ignore_function_calls(cbmem_run_init_hooks);

	cbmem_initialize_empty_id_size(id1, entry1_size);
	entry2 = cbmem_add(id2, entry2_size);
	entry3 = cbmem_add(id3, entry3_size);
	entry1 = cbmem_find(id1);

	/* All pointers should be non-null and distinct. */
	assert_non_null(entry1);
	assert_non_null(entry2);
	assert_non_null(entry3);
	assert_ptr_not_equal(entry1, entry2);
	assert_ptr_not_equal(entry1, entry3);
	assert_ptr_not_equal(entry2, entry3);

	/* Adding the same ID should yield the same entry pointer. */
	entry4 = cbmem_add(id2, entry2_size);
	assert_ptr_equal(entry2, entry4);

	/* Expect error while trying to add range with zero size */
	assert_null(cbmem_add(id0, 0));
}

static void test_cbmem_entry_find(void **state)
{
	const int id1 = 0xA0;
	const int id2 = 0xDD;
	const int id3 = 0xBD;
	const size_t entry1_size = CBMEM_ROOT_SIZE;
	const size_t entry2_size = CBMEM_ROOT_SIZE / 2;
	const size_t entry3_size = 6321;
	const struct cbmem_entry *cbm_e1, *cbm_e2, *cbm_e3;
	const struct cbmem_entry *entry1, *entry2, *entry3;

	ignore_function_calls(cbmem_run_init_hooks);

	cbmem_initialize_empty();
	cbm_e1 = cbmem_entry_add(id1, entry1_size);
	cbm_e2 = cbmem_entry_add(id2, entry2_size);
	cbm_e3 = cbmem_entry_add(id3, entry3_size);

	/* Check pointers correctness and size for each entry */
	entry1 = cbmem_entry_find(id1);
	assert_ptr_equal(cbm_e1, entry1);
	assert_int_equal(0, (uintptr_t)cbmem_entry_start(cbm_e1) % CBMEM_SM_ALIGN);
	assert_int_equal(entry1_size, cbmem_entry_size(entry1));

	entry2 = cbmem_entry_find(id2);
	assert_ptr_equal(cbm_e2, entry2);
	assert_int_equal(0, (uintptr_t)cbmem_entry_start(cbm_e2) % CBMEM_SM_ALIGN);
	assert_int_equal(entry2_size, cbmem_entry_size(entry2));

	entry3 = cbmem_entry_find(id3);
	assert_ptr_equal(cbm_e3, entry3);
	assert_int_equal(0, (uintptr_t)cbmem_entry_start(cbm_e3) % CBMEM_SM_ALIGN);
	assert_int_equal(entry3_size, cbmem_entry_size(entry3));
}

static void test_cbmem_find(void **state)
{
	const int id1 = 0x30;
	const int id2 = 0x22;
	const int id3 = 0x101;
	void *cbm_e1, *cbm_e2, *entry1, *entry2;

	ignore_function_calls(cbmem_run_init_hooks);

	cbmem_initialize_empty();
	cbm_e1 = cbmem_add(id1, CBMEM_ROOT_SIZE);
	cbm_e2 = cbmem_add(id2, CBMEM_ROOT_SIZE);

	entry1 = cbmem_find(id1);
	assert_non_null(entry1);
	assert_ptr_equal(cbm_e1, entry1);

	entry2 = cbmem_find(id2);
	assert_non_null(entry2);
	assert_ptr_equal(cbm_e2, entry2);

	/* Expect error when looking for non-existent id */
	assert_null(cbmem_find(id3));
}

static void test_cbmem_entry_remove(void **state)
{
	const int id1 = 0x2D;
	const int id2 = 0x3D;
	const int id3 = 0x4D;
	const struct cbmem_entry *cbm_e1, *cbm_e2;

	ignore_function_calls(cbmem_run_init_hooks);

	cbmem_initialize_empty();
	cbm_e1 = cbmem_entry_add(id1, CBMEM_ROOT_SIZE);
	cbm_e2 = cbmem_entry_add(id2, CBMEM_ROOT_SIZE);

	/* Entries can be removed only in reverse order they have been added. */
	assert_int_equal(-1, cbmem_entry_remove(cbm_e1));
	assert_int_equal(0, cbmem_entry_remove(cbm_e2));
	assert_int_equal(0, cbmem_entry_remove(cbm_e1));

	/* Expect error when removing non-existent entry */
	assert_int_equal(-1, cbmem_entry_remove(cbmem_entry_find(id3)));
}

static void test_cbmem_entry_size(void **state)
{
	const int id1 = 0x4422;
	const int id2 = 0x2137;
	const int id3 = 0xb111;
	const size_t size1 = CBMEM_ROOT_SIZE * 4;
	const size_t size2 = 0x43;
	const size_t size3 = CBMEM_ROOT_SIZE * 8 + 7;

	ignore_function_calls(cbmem_run_init_hooks);

	cbmem_initialize_empty_id_size(id1, size1);
	assert_non_null(cbmem_entry_add(id2, size2));
	assert_non_null(cbmem_entry_add(id3, size3));

	/* Entry size needs not to be aligned.
	   It has to be the same as provided while adding it. */
	assert_int_equal(size1, cbmem_entry_size(cbmem_entry_find(id1)));
	assert_int_equal(size2, cbmem_entry_size(cbmem_entry_find(id2)));
	assert_int_equal(size3, cbmem_entry_size(cbmem_entry_find(id3)));
}

static void test_cbmem_entry_start(void **state)
{
	const int id1 = 0x62;
	const int id2 = 0x26;

	ignore_function_calls(cbmem_run_init_hooks);

	cbmem_initialize_empty_id_size(CBMEM_ENTRY_ID, CBMEM_ROOT_SIZE);
	cbmem_entry_find(CBMEM_ENTRY_ID);
	cbmem_entry_add(id1, 0x40);
	cbmem_entry_add(id2, CBMEM_ROOT_SIZE * 2);

	/* Check if start address of found entry is the same
	   as the one returned by cbmem_find() function */
	assert_ptr_equal(cbmem_find(CBMEM_ENTRY_ID),
			 cbmem_entry_start(cbmem_entry_find(CBMEM_ENTRY_ID)));
	assert_ptr_equal(cbmem_find(id1), cbmem_entry_start(cbmem_entry_find(id1)));
	assert_ptr_equal(cbmem_find(id2), cbmem_entry_start(cbmem_entry_find(id2)));
}

/* Reimplementation for testing purposes */
void bootmem_add_range(uint64_t start, uint64_t size, const enum bootmem_type tag)
{
	check_expected(start);
	check_expected(size);
	check_expected(tag);
}

static void test_cbmem_add_bootmem(void **state)
{
	void *base_ptr = NULL;
	size_t size = 0;
	const int id1 = 0xCA;
	const int id2 = 0xEA;
	const int id3 = 0xDA;
	const size_t size1 = 1024;
	const size_t size2 = 128;
	const size_t size3 = 8192;

	ignore_function_calls(cbmem_run_init_hooks);

	cbmem_initialize_empty_id_size(CBMEM_ENTRY_ID, CBMEM_ROOT_SIZE);
	cbmem_entry_add(id1, size1);
	cbmem_entry_add(id2, size2);
	cbmem_entry_add(id3, size3);

	cbmem_get_region(&base_ptr, &size);
	assert_int_equal(ALIGN_DOWN(_cbmem_top_ptr, LIMIT_ALIGN), base_ptr + size);

	expect_value(bootmem_add_range, start, base_ptr);
	expect_value(bootmem_add_range, size, size);
	expect_value(bootmem_add_range, tag, BM_MEM_TABLE);
	cbmem_add_bootmem();

	/* Check that adding bootmem does not change base or size of cbmem */
	cbmem_get_region(&base_ptr, &size);
	assert_int_equal(ALIGN_DOWN(_cbmem_top_ptr, LIMIT_ALIGN), base_ptr + size);
}

static void test_cbmem_get_region(void **state)
{
	int i;
	void *base_ptr = NULL;
	size_t size = 0;
	size_t size_counter = 0;
	const size_t entry_size = 0x2000;
	const size_t alloc_num = 32;
	const size_t small_entry_size = 64;
	const size_t small_alloc_num = 3;

	ignore_function_calls(cbmem_run_init_hooks);

	cbmem_initialize_empty_id_size(CBMEM_ENTRY_ID, CBMEM_ROOT_SIZE);

	/* Check size and base pointer for empty initialized cbmem */
	cbmem_get_region(&base_ptr, &size);
	assert_non_null(base_ptr);
	assert_int_not_equal(0, size);
	assert_int_equal(CBMEM_ROOT_SIZE + cbmem_overhead_size(), size);
	assert_int_equal(ALIGN_DOWN(_cbmem_top_ptr, LIMIT_ALIGN), base_ptr + size);

	/* Check for multiple big allocations */
	for (i = 1; i <= alloc_num; ++i) {
		const struct cbmem_entry *e = cbmem_entry_add(i, entry_size);
		assert_non_null(e);
		size_counter += cbmem_entry_size(e);

		/* Check if size is correct after each big allocation */
		cbmem_get_region(&base_ptr, &size);
		assert_int_equal(size_counter + cbmem_overhead_size() + CBMEM_ROOT_SIZE, size);
	}

	/* Check for few small allocations. */
	for (; i <= alloc_num + small_alloc_num; ++i) {
		const struct cbmem_entry *e = cbmem_entry_add(i, small_entry_size);
		assert_non_null(e);

		/* Check if size is correct after each small allocation. It should not change
		   as small entries have their region allocated and entry size is selected
		   to fit in it couple of times */
		cbmem_get_region(&base_ptr, &size);
		assert_int_equal(size_counter + cbmem_overhead_size() + CBMEM_ROOT_SIZE, size);
	}
}

static void test_general_data_structure(void **state)
{
	/* Initialize cbmem with few big and small entries, then check if binary data structure
	   is the same as stored in array containing hardcoded dumped cbmem */
	prepare_simple_cbmem();
	assert_memory_equal(get_cbmem_ptr(), test_cbmem_data, CBMEM_SIZE);
}

static int setup_teardown_test_imd_cbmem(void **state)
{
	reset_and_clear_cbmem();
	return 0;
}

static int setup_group_imd_cbmem(void **state)
{
	/* Allocate more data to have space for alignment */
	void *top_ptr = malloc(CBMEM_SIZE + DYN_CBMEM_ALIGN_SIZE);

	if (!top_ptr)
		return -1;

	*state = top_ptr;

	_cbmem_top_ptr = ALIGN_UP((uintptr_t)top_ptr + CBMEM_SIZE, DYN_CBMEM_ALIGN_SIZE);
	return 0;
}

static int teardown_group_imd_cbmem(void **state)
{
	reset_imd();
	free(*state);
	return 0;
}

int main(void)
{
	const struct CMUnitTest tests[] = {
		cmocka_unit_test_setup_teardown(test_cbmem_top,
				setup_teardown_test_imd_cbmem,
				setup_teardown_test_imd_cbmem),
		cmocka_unit_test_setup_teardown(test_cbmem_initialize_empty,
				setup_teardown_test_imd_cbmem,
				setup_teardown_test_imd_cbmem),
		cmocka_unit_test_setup_teardown(test_cbmem_initialize_empty_id_size,
				setup_teardown_test_imd_cbmem,
				setup_teardown_test_imd_cbmem),
		cmocka_unit_test_setup_teardown(test_cbmem_initialize,
				setup_teardown_test_imd_cbmem,
				setup_teardown_test_imd_cbmem),
#if ENV_ROMSTAGE_OR_BEFORE
		cmocka_unit_test_setup_teardown(test_cbmem_initialize_id_size_romstage,
				setup_teardown_test_imd_cbmem,
				setup_teardown_test_imd_cbmem),
#else
		cmocka_unit_test_setup_teardown(test_cbmem_initialize_id_size_ramstage,
				setup_teardown_test_imd_cbmem,
				setup_teardown_test_imd_cbmem),
#endif
		cmocka_unit_test_setup_teardown(test_cbmem_recovery,
				setup_teardown_test_imd_cbmem,
				setup_teardown_test_imd_cbmem),
		cmocka_unit_test_setup_teardown(test_cbmem_entry_add,
				setup_teardown_test_imd_cbmem,
				setup_teardown_test_imd_cbmem),
		cmocka_unit_test_setup_teardown(test_cbmem_add,
				setup_teardown_test_imd_cbmem,
				setup_teardown_test_imd_cbmem),
		cmocka_unit_test_setup_teardown(test_cbmem_entry_find,
				setup_teardown_test_imd_cbmem,
				setup_teardown_test_imd_cbmem),
		cmocka_unit_test_setup_teardown(test_cbmem_find,
				setup_teardown_test_imd_cbmem,
				setup_teardown_test_imd_cbmem),
		cmocka_unit_test_setup_teardown(test_cbmem_entry_remove,
				setup_teardown_test_imd_cbmem,
				setup_teardown_test_imd_cbmem),
		cmocka_unit_test_setup_teardown(test_cbmem_entry_size,
				setup_teardown_test_imd_cbmem,
				setup_teardown_test_imd_cbmem),
		cmocka_unit_test_setup_teardown(test_cbmem_entry_start,
				setup_teardown_test_imd_cbmem,
				setup_teardown_test_imd_cbmem),
		cmocka_unit_test_setup_teardown(test_cbmem_add_bootmem,
				setup_teardown_test_imd_cbmem,
				setup_teardown_test_imd_cbmem),
		cmocka_unit_test_setup_teardown(test_cbmem_get_region,
				setup_teardown_test_imd_cbmem,
				setup_teardown_test_imd_cbmem),
		cmocka_unit_test_setup_teardown(test_general_data_structure,
				setup_teardown_test_imd_cbmem,
				setup_teardown_test_imd_cbmem),
	};

	return cb_run_group_tests(tests, setup_group_imd_cbmem, teardown_group_imd_cbmem);
}