Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
/* SPDX-License-Identifier: GPL-2.0-only */

#include <stdlib.h>
#include <types.h>
#include <string.h>
#include <tests/test.h>
#include <imd.h>
#include <imd_private.h>
#include <cbmem.h>
#include <commonlib/bsd/helpers.h>
#include <lib.h>

/* Auxiliary functions and definitions. */

#define LG_ROOT_SIZE                                                                           \
	align_up_pow2(sizeof(struct imd_root_pointer) + sizeof(struct imd_root)                \
		      + 3 * sizeof(struct imd_entry))
#define LG_ENTRY_ALIGN (2 * sizeof(int32_t))
#define LG_ENTRY_SIZE (2 * sizeof(int32_t))
#define LG_ENTRY_ID 0xA001

#define SM_ROOT_SIZE LG_ROOT_SIZE
#define SM_ENTRY_ALIGN sizeof(uint32_t)
#define SM_ENTRY_SIZE sizeof(uint32_t)
#define SM_ENTRY_ID 0xB001

#define INVALID_REGION_ID 0xC001

static uint32_t align_up_pow2(uint32_t x)
{
	return (1 << log2_ceil(x));
}

static size_t max_entries(size_t root_size)
{
	return (root_size - sizeof(struct imd_root_pointer) - sizeof(struct imd_root))
	       / sizeof(struct imd_entry);
}

/*
 * Mainly, we should check that imd_handle_init() aligns upper_limit properly
 * for various inputs. Upper limit is the _exclusive_ address, so we expect
 * ALIGN_DOWN.
 */
static void test_imd_handle_init(void **state)
{
	int i;
	void *base;
	struct imd imd;
	uintptr_t test_inputs[] = {
		0,		     /* Lowest possible address */
		0xA000,		     /* Fits in 16 bits, should not get rounded down */
		0xDEAA,		     /* Fits in 16 bits */
		0xB0B0B000,	     /* Fits in 32 bits, should not get rounded down */
		0xF0F0F0F0,	     /* Fits in 32 bits */
		((1ULL << 32) + 4),  /* Just above 32-bit limit */
		0x6666777788889000,  /* Fits in 64 bits, should not get rounded down */
		((1ULL << 60) - 100) /* Very large address, fitting in 64 bits */
	};

	for (i = 0; i < ARRAY_SIZE(test_inputs); i++) {
		base = (void *)test_inputs[i];

		imd_handle_init(&imd, (void *)base);

		assert_int_equal(imd.lg.limit % LIMIT_ALIGN, 0);
		assert_int_equal(imd.lg.limit, ALIGN_DOWN(test_inputs[i], LIMIT_ALIGN));
		assert_ptr_equal(imd.lg.r, NULL);

		/* Small allocations not initialized */
		assert_ptr_equal(imd.sm.limit, NULL);
		assert_ptr_equal(imd.sm.r, NULL);
	}
}

static void test_imd_handle_init_partial_recovery(void **state)
{
	void *base;
	struct imd imd = {0};
	const struct imd_entry *entry;

	imd_handle_init_partial_recovery(&imd);
	assert_null(imd.lg.limit);
	assert_null(imd.sm.limit);

	base = malloc(LIMIT_ALIGN);
	if (base == NULL)
		fail_msg("Cannot allocate enough memory - fail test");

	imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
	imd_handle_init_partial_recovery(&imd);

	assert_non_null(imd.lg.r);
	assert_null(imd.sm.limit);

	assert_int_equal(0, imd_create_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN));
	entry = imd_entry_add(&imd, SMALL_REGION_ID, LG_ENTRY_SIZE);
	assert_non_null(entry);

	imd_handle_init_partial_recovery(&imd);

	assert_non_null(imd.lg.r);
	assert_non_null(imd.sm.limit);
	assert_ptr_equal(imd.lg.r + entry->start_offset + LG_ENTRY_SIZE, imd.sm.limit);
	assert_non_null(imd.sm.r);

	free(base);
}

static void test_imd_create_empty(void **state)
{
	struct imd imd = {0};
	void *base;
	struct imd_root *r;
	struct imd_entry *e;

	/* Expect imd_create_empty to fail, since imd handle is not initialized */
	assert_int_equal(-1, imd_create_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN));
	base = malloc(sizeof(struct imd_root_pointer) + sizeof(struct imd_root));
	if (base == NULL)
		fail_msg("Cannot allocate enough memory - fail test");

	imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));

	/* Try incorrect sizes */
	assert_int_equal(
		-1, imd_create_empty(&imd, sizeof(struct imd_root_pointer), LG_ENTRY_ALIGN));
	assert_int_equal(-1, imd_create_empty(&imd, LG_ROOT_SIZE, 2 * LG_ROOT_SIZE));

	/* Working case */
	assert_int_equal(0, imd_create_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN));

	/* Only large allocation initialized with one entry for the root region */
	r = (struct imd_root *)(imd.lg.r);
	assert_non_null(r);

	e = &r->entries[r->num_entries - 1];

	assert_int_equal(max_entries(LG_ROOT_SIZE), r->max_entries);
	assert_int_equal(1, r->num_entries);
	assert_int_equal(0, r->flags);
	assert_int_equal(LG_ENTRY_ALIGN, r->entry_align);
	assert_int_equal(0, r->max_offset);
	assert_ptr_equal(e, &r->entries);

	assert_int_equal(IMD_ENTRY_MAGIC, e->magic);
	assert_int_equal(0, e->start_offset);
	assert_int_equal(LG_ROOT_SIZE, e->size);
	assert_int_equal(CBMEM_ID_IMD_ROOT, e->id);

	free(base);
}

static void test_imd_create_tiered_empty(void **state)
{
	void *base;
	size_t sm_region_size, lg_region_wrong_size;
	struct imd imd = {0};
	struct imd_root *r;
	struct imd_entry *fst_lg_entry, *snd_lg_entry, *sm_entry;

	/* Uninitialized imd handle */
	assert_int_equal(-1, imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN,
						     LG_ROOT_SIZE, SM_ENTRY_ALIGN));

	base = malloc(LIMIT_ALIGN);
	if (base == NULL)
		fail_msg("Cannot allocate enough memory - fail test");

	imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));

	/* Too small root_size for small region */
	assert_int_equal(-1, imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN,
						     sizeof(int32_t), 2 * sizeof(int32_t)));

	/* Fail when large region doesn't have capacity for more than 1 entry */
	lg_region_wrong_size = sizeof(struct imd_root_pointer) + sizeof(struct imd_root)
			       + sizeof(struct imd_entry);
	expect_assert_failure(imd_create_tiered_empty(
		&imd, lg_region_wrong_size, LG_ENTRY_ALIGN, SM_ROOT_SIZE, SM_ENTRY_ALIGN));

	assert_int_equal(0, imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN,
						    SM_ROOT_SIZE, SM_ENTRY_ALIGN));

	r = imd.lg.r;

	/* One entry for root_region and one for small allocations */
	assert_int_equal(2, r->num_entries);

	fst_lg_entry = &r->entries[0];
	assert_int_equal(IMD_ENTRY_MAGIC, fst_lg_entry->magic);
	assert_int_equal(0, fst_lg_entry->start_offset);
	assert_int_equal(LG_ROOT_SIZE, fst_lg_entry->size);
	assert_int_equal(CBMEM_ID_IMD_ROOT, fst_lg_entry->id);

	/* Calculated like in imd_create_tiered_empty */
	sm_region_size = max_entries(SM_ROOT_SIZE) * SM_ENTRY_ALIGN;
	sm_region_size += SM_ROOT_SIZE;
	sm_region_size = ALIGN_UP(sm_region_size, LG_ENTRY_ALIGN);

	snd_lg_entry = &r->entries[1];
	assert_int_equal(IMD_ENTRY_MAGIC, snd_lg_entry->magic);
	assert_int_equal(-sm_region_size, snd_lg_entry->start_offset);
	assert_int_equal(CBMEM_ID_IMD_SMALL, snd_lg_entry->id);

	assert_int_equal(sm_region_size, snd_lg_entry->size);

	r = imd.sm.r;
	assert_int_equal(1, r->num_entries);

	sm_entry = &r->entries[0];
	assert_int_equal(IMD_ENTRY_MAGIC, sm_entry->magic);
	assert_int_equal(0, sm_entry->start_offset);
	assert_int_equal(SM_ROOT_SIZE, sm_entry->size);
	assert_int_equal(CBMEM_ID_IMD_ROOT, sm_entry->id);

	free(base);
}

/* Tests for imdr_recover. */
static void test_imd_recover(void **state)
{
	int32_t offset_copy, max_offset_copy;
	uint32_t rp_magic_copy, num_entries_copy;
	uint32_t e_align_copy, e_magic_copy, e_id_copy;
	uint32_t size_copy, diff;
	void *base;
	struct imd imd = {0};
	struct imd_root_pointer *rp;
	struct imd_root *r;
	struct imd_entry *lg_root_entry, *sm_root_entry, *ptr;
	const struct imd_entry *lg_entry;

	/* Fail when the limit for lg was not set. */
	imd.lg.limit = (uintptr_t)NULL;
	assert_int_equal(-1, imd_recover(&imd));

	/* Set the limit for lg. */
	base = malloc(LIMIT_ALIGN);
	if (base == NULL)
		fail_msg("Cannot allocate enough memory - fail test");

	imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));

	/* Fail when the root pointer is not valid. */
	rp = (void *)imd.lg.limit - sizeof(struct imd_root_pointer);
	assert_non_null(rp);
	assert_int_equal(IMD_ROOT_PTR_MAGIC, rp->magic);

	rp_magic_copy = rp->magic;
	rp->magic = 0;
	assert_int_equal(-1, imd_recover(&imd));
	rp->magic = rp_magic_copy;

	/* Set the root pointer. */
	assert_int_equal(0, imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN,
						    SM_ROOT_SIZE, SM_ENTRY_ALIGN));
	assert_int_equal(2, ((struct imd_root *)imd.lg.r)->num_entries);
	assert_int_equal(1, ((struct imd_root *)imd.sm.r)->num_entries);

	/* Fail if the number of entries exceeds the maximum number of entries. */
	r = imd.lg.r;
	num_entries_copy = r->num_entries;
	r->num_entries = r->max_entries + 1;
	assert_int_equal(-1, imd_recover(&imd));
	r->num_entries = num_entries_copy;

	/* Fail if entry align is not a power of 2.  */
	e_align_copy = r->entry_align;
	r->entry_align++;
	assert_int_equal(-1, imd_recover(&imd));
	r->entry_align = e_align_copy;

	/* Fail when an entry is not valid. */
	lg_root_entry = &r->entries[0];
	e_magic_copy = lg_root_entry->magic;
	lg_root_entry->magic = 0;
	assert_int_equal(-1, imd_recover(&imd));
	lg_root_entry->magic = e_magic_copy;

	/* Add new entries: large and small. */
	lg_entry = imd_entry_add(&imd, LG_ENTRY_ID, LG_ENTRY_SIZE);
	assert_non_null(lg_entry);
	assert_int_equal(3, r->num_entries);

	assert_non_null(imd_entry_add(&imd, SM_ENTRY_ID, SM_ENTRY_SIZE));
	assert_int_equal(2, ((struct imd_root *)imd.sm.r)->num_entries);

	/* Fail when start_addr is lower than low_limit. */
	r = imd.lg.r;
	max_offset_copy = r->max_offset;
	r->max_offset = lg_entry->start_offset + sizeof(int32_t);
	assert_int_equal(-1, imd_recover(&imd));
	r->max_offset = max_offset_copy;

	/* Fail when start_addr is at least imdr->limit. */
	offset_copy = lg_entry->start_offset;
	ptr = (struct imd_entry *)lg_entry;
	ptr->start_offset = (void *)imd.lg.limit - (void *)r;
	assert_int_equal(-1, imd_recover(&imd));
	ptr->start_offset = offset_copy;

	/* Fail when (start_addr + e->size) is higher than imdr->limit. */
	size_copy = lg_entry->size;
	diff = (void *)imd.lg.limit - ((void *)r + lg_entry->start_offset);
	ptr->size = diff + 1;
	assert_int_equal(-1, imd_recover(&imd));
	ptr->size = size_copy;

	/* Succeed if small region is not present. */
	sm_root_entry = &r->entries[1];
	e_id_copy = sm_root_entry->id;
	sm_root_entry->id = 0;
	assert_int_equal(0, imd_recover(&imd));
	sm_root_entry->id = e_id_copy;

	assert_int_equal(0, imd_recover(&imd));

	free(base);
}

static void test_imd_limit_size(void **state)
{
	void *base;
	struct imd imd = {0};
	size_t root_size, max_size;

	max_size = align_up_pow2(sizeof(struct imd_root_pointer) + sizeof(struct imd_root)
				 + 3 * sizeof(struct imd_entry));

	assert_int_equal(-1, imd_limit_size(&imd, max_size));

	base = malloc(LIMIT_ALIGN);
	if (base == NULL)
		fail_msg("Cannot allocate enough memory - fail test");
	imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));

	root_size = align_up_pow2(sizeof(struct imd_root_pointer) + sizeof(struct imd_root)
				  + 2 * sizeof(struct imd_entry));
	imd.lg.r = (void *)imd.lg.limit - root_size;

	imd_create_empty(&imd, root_size, LG_ENTRY_ALIGN);
	assert_int_equal(-1, imd_limit_size(&imd, root_size - 1));
	assert_int_equal(0, imd_limit_size(&imd, max_size));

	/* Cannot create such a big entry */
	assert_null(imd_entry_add(&imd, LG_ENTRY_ID, max_size - root_size + 1));

	free(base);
}

static void test_imd_lockdown(void **state)
{
	struct imd imd = {0};
	struct imd_root *r_lg, *r_sm;

	assert_int_equal(-1, imd_lockdown(&imd));

	imd.lg.r = malloc(sizeof(struct imd_root));
	if (imd.lg.r == NULL)
		fail_msg("Cannot allocate enough memory - fail test");

	r_lg = (struct imd_root *)(imd.lg.r);

	assert_int_equal(0, imd_lockdown(&imd));
	assert_true(r_lg->flags & IMD_FLAG_LOCKED);

	imd.sm.r = malloc(sizeof(struct imd_root));
	if (imd.sm.r == NULL)
		fail_msg("Cannot allocate enough memory - fail test");
	r_sm = (struct imd_root *)(imd.sm.r);

	assert_int_equal(0, imd_lockdown(&imd));
	assert_true(r_sm->flags & IMD_FLAG_LOCKED);

	free(imd.lg.r);
	free(imd.sm.r);
}

static void test_imd_region_used(void **state)
{
	struct imd imd = {0};
	struct imd_entry *first_entry, *new_entry;
	struct imd_root *r;
	size_t size;
	void *imd_base;
	void *base;

	assert_int_equal(-1, imd_region_used(&imd, &base, &size));

	imd_base = malloc(LIMIT_ALIGN);
	if (imd_base == NULL)
		fail_msg("Cannot allocate enough memory - fail test");
	imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)imd_base));

	assert_int_equal(-1, imd_region_used(&imd, &base, &size));
	assert_int_equal(0, imd_create_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN));
	assert_int_equal(0, imd_region_used(&imd, &base, &size));

	r = (struct imd_root *)imd.lg.r;
	first_entry = &r->entries[r->num_entries - 1];

	assert_int_equal(r + first_entry->start_offset, (uintptr_t)base);
	assert_int_equal(first_entry->size, size);

	assert_non_null(imd_entry_add(&imd, LG_ENTRY_ID, LG_ENTRY_SIZE));
	assert_int_equal(2, r->num_entries);

	assert_int_equal(0, imd_region_used(&imd, &base, &size));

	new_entry = &r->entries[r->num_entries - 1];

	assert_true((void *)r + new_entry->start_offset == base);
	assert_int_equal(first_entry->size + new_entry->size, size);

	free(imd_base);
}

static void test_imd_entry_add(void **state)
{
	int i;
	struct imd imd = {0};
	size_t entry_size = 0;
	size_t used_size;
	ssize_t entry_offset;
	void *base;
	struct imd_root *r, *sm_r, *lg_r;
	struct imd_entry *first_entry, *new_entry;
	uint32_t num_entries_copy;
	int32_t max_offset_copy;

	/* No small region case. */
	assert_null(imd_entry_add(&imd, LG_ENTRY_ID, entry_size));

	base = malloc(LIMIT_ALIGN);
	if (base == NULL)
		fail_msg("Cannot allocate enough memory - fail test");

	imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));

	assert_int_equal(0, imd_create_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN));

	r = (struct imd_root *)imd.lg.r;
	first_entry = &r->entries[r->num_entries - 1];

	/* Cannot add an entry when root is locked. */
	r->flags = IMD_FLAG_LOCKED;
	assert_null(imd_entry_add(&imd, LG_ENTRY_ID, entry_size));
	r->flags = 0;

	/* Fail when the maximum number of entries has been reached. */
	num_entries_copy = r->num_entries;
	r->num_entries = r->max_entries;
	assert_null(imd_entry_add(&imd, LG_ENTRY_ID, entry_size));
	r->num_entries = num_entries_copy;

	/* Fail when entry size is 0 */
	assert_null(imd_entry_add(&imd, LG_ENTRY_ID, 0));

	/* Fail when entry size (after alignment) overflows imd total size. */
	entry_size = 2049;
	max_offset_copy = r->max_offset;
	r->max_offset = -entry_size;
	assert_null(imd_entry_add(&imd, LG_ENTRY_ID, entry_size));
	r->max_offset = max_offset_copy;

	/* Finally succeed. */
	entry_size = 2 * sizeof(int32_t);
	assert_non_null(imd_entry_add(&imd, LG_ENTRY_ID, entry_size));
	assert_int_equal(2, r->num_entries);

	new_entry = &r->entries[r->num_entries - 1];
	assert_int_equal(sizeof(struct imd_entry), (void *)new_entry - (void *)first_entry);

	assert_int_equal(IMD_ENTRY_MAGIC, new_entry->magic);
	assert_int_equal(LG_ENTRY_ID, new_entry->id);
	assert_int_equal(entry_size, new_entry->size);

	used_size = ALIGN_UP(entry_size, r->entry_align);
	entry_offset = first_entry->start_offset - used_size;
	assert_int_equal(entry_offset, new_entry->start_offset);

	/* Use small region case. */
	imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN, SM_ROOT_SIZE,
				SM_ENTRY_ALIGN);

	lg_r = imd.lg.r;
	sm_r = imd.sm.r;

	/* All five new entries should be added to small allocations */
	for (i = 0; i < 5; i++) {
		assert_non_null(imd_entry_add(&imd, SM_ENTRY_ID, SM_ENTRY_SIZE));
		assert_int_equal(i + 2, sm_r->num_entries);
		assert_int_equal(2, lg_r->num_entries);
	}

	/* But next should fall back on large region */
	assert_non_null(imd_entry_add(&imd, SM_ENTRY_ID, SM_ENTRY_SIZE));
	assert_int_equal(6, sm_r->num_entries);
	assert_int_equal(3, lg_r->num_entries);

	/*
	 * Small allocation is created when occupies less than 1/4 of available
	 * small region. Verify this.
	 */
	imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN, SM_ROOT_SIZE,
				SM_ENTRY_ALIGN);

	assert_non_null(imd_entry_add(&imd, SM_ENTRY_ID, -sm_r->max_offset / 4 + 1));
	assert_int_equal(1, sm_r->num_entries);
	assert_int_equal(3, lg_r->num_entries);

	/* Next two should go into small region */
	assert_non_null(imd_entry_add(&imd, SM_ENTRY_ID, -sm_r->max_offset / 4));
	assert_int_equal(2, sm_r->num_entries);
	assert_int_equal(3, lg_r->num_entries);

	/* (1/4 * 3/4) */
	assert_non_null(imd_entry_add(&imd, SM_ENTRY_ID, -sm_r->max_offset / 16 * 3));
	assert_int_equal(3, sm_r->num_entries);
	assert_int_equal(3, lg_r->num_entries);

	free(base);
}

static void test_imd_entry_find(void **state)
{
	struct imd imd = {0};
	void *base;

	base = malloc(LIMIT_ALIGN);
	if (base == NULL)
		fail_msg("Cannot allocate enough memory - fail test");
	imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));

	assert_int_equal(0, imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN,
						    SM_ROOT_SIZE, SM_ENTRY_ALIGN));

	assert_non_null(imd_entry_add(&imd, LG_ENTRY_ID, LG_ENTRY_SIZE));

	assert_non_null(imd_entry_find(&imd, LG_ENTRY_ID));
	assert_non_null(imd_entry_find(&imd, SMALL_REGION_ID));

	/* Try invalid id, should fail */
	assert_null(imd_entry_find(&imd, INVALID_REGION_ID));

	free(base);
}

static void test_imd_entry_find_or_add(void **state)
{
	struct imd imd = {0};
	const struct imd_entry *entry;
	struct imd_root *r;
	void *base;

	base = malloc(LIMIT_ALIGN);
	if (base == NULL)
		fail_msg("Cannot allocate enough memory - fail test");
	imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));

	assert_null(imd_entry_find_or_add(&imd, LG_ENTRY_ID, LG_ENTRY_SIZE));

	assert_int_equal(0, imd_create_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN));
	entry = imd_entry_find_or_add(&imd, LG_ENTRY_ID, LG_ENTRY_SIZE);
	assert_non_null(entry);

	r = (struct imd_root *)imd.lg.r;

	assert_int_equal(entry->id, LG_ENTRY_ID);
	assert_int_equal(2, r->num_entries);
	assert_non_null(imd_entry_find_or_add(&imd, LG_ENTRY_ID, LG_ENTRY_SIZE));
	assert_int_equal(2, r->num_entries);

	free(base);
}

static void test_imd_entry_size(void **state)
{
	struct imd_entry entry = {.size = LG_ENTRY_SIZE};

	assert_int_equal(LG_ENTRY_SIZE, imd_entry_size(&entry));

	entry.size = 0;
	assert_int_equal(0, imd_entry_size(&entry));
}

static void test_imd_entry_at(void **state)
{
	struct imd imd = {0};
	struct imd_root *r;
	struct imd_entry *e = NULL;
	const struct imd_entry *entry;
	void *base;

	base = malloc(LIMIT_ALIGN);
	if (base == NULL)
		fail_msg("Cannot allocate enough memory - fail test");
	imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));

	assert_int_equal(0, imd_create_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN));

	/* Fail when entry is NULL */
	assert_null(imd_entry_at(&imd, e));

	entry = imd_entry_add(&imd, LG_ENTRY_ID, LG_ENTRY_SIZE);
	assert_non_null(entry);

	r = (struct imd_root *)imd.lg.r;
	assert_ptr_equal((void *)r + entry->start_offset, imd_entry_at(&imd, entry));

	free(base);
}

static void test_imd_entry_id(void **state)
{
	struct imd_entry entry = {.id = LG_ENTRY_ID};

	assert_int_equal(LG_ENTRY_ID, imd_entry_id(&entry));
}

static void test_imd_entry_remove(void **state)
{
	void *base;
	struct imd imd = {0};
	struct imd_root *r;
	const struct imd_entry *fst_lg_entry, *snd_lg_entry, *fst_sm_entry;
	const struct imd_entry *e = NULL;

	/* Uninitialized handle */
	assert_int_equal(-1, imd_entry_remove(&imd, e));

	base = malloc(LIMIT_ALIGN);
	if (base == NULL)
		fail_msg("Cannot allocate enough memory - fail test");

	imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));

	assert_int_equal(0, imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN,
						    SM_ROOT_SIZE, SM_ENTRY_ALIGN));

	r = imd.lg.r;
	assert_int_equal(2, r->num_entries);
	fst_lg_entry = &r->entries[0];
	snd_lg_entry = &r->entries[1];

	/* Only last entry can be removed */
	assert_int_equal(-1, imd_entry_remove(&imd, fst_lg_entry));
	r->flags = IMD_FLAG_LOCKED;
	assert_int_equal(-1, imd_entry_remove(&imd, snd_lg_entry));
	r->flags = 0;

	r = imd.sm.r;
	assert_int_equal(1, r->num_entries);
	fst_sm_entry = &r->entries[0];

	/* Fail trying to remove root entry */
	assert_int_equal(-1, imd_entry_remove(&imd, fst_sm_entry));
	assert_int_equal(1, r->num_entries);

	r = imd.lg.r;
	assert_int_equal(0, imd_entry_remove(&imd, snd_lg_entry));
	assert_int_equal(1, r->num_entries);

	/* Fail trying to remove root entry */
	assert_int_equal(-1, imd_entry_remove(&imd, fst_lg_entry));
	assert_int_equal(1, r->num_entries);

	free(base);
}

static void test_imd_cursor_init(void **state)
{
	struct imd imd = {0};
	struct imd_cursor cursor;

	assert_int_equal(-1, imd_cursor_init(NULL, NULL));
	assert_int_equal(-1, imd_cursor_init(NULL, &cursor));
	assert_int_equal(-1, imd_cursor_init(&imd, NULL));
	assert_int_equal(0, imd_cursor_init(&imd, &cursor));

	assert_ptr_equal(cursor.imdr[0], &imd.lg);
	assert_ptr_equal(cursor.imdr[1], &imd.sm);
}

static void test_imd_cursor_next(void **state)
{
	void *base;
	struct imd imd = {0};
	struct imd_cursor cursor;
	struct imd_root *r;
	const struct imd_entry *entry;
	struct imd_entry *fst_lg_entry, *snd_lg_entry, *fst_sm_entry;
	assert_int_equal(0, imd_cursor_init(&imd, &cursor));

	cursor.current_imdr = 3;
	cursor.current_entry = 0;
	assert_null(imd_cursor_next(&cursor));

	cursor.current_imdr = 0;
	assert_null(imd_cursor_next(&cursor));

	base = malloc(LIMIT_ALIGN);
	if (base == NULL)
		fail_msg("Cannot allocate enough memory - fail test");
	imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));

	assert_int_equal(0, imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN,
						    SM_ROOT_SIZE, SM_ENTRY_ALIGN));

	r = imd.lg.r;
	entry = imd_cursor_next(&cursor);
	assert_non_null(entry);

	fst_lg_entry = &r->entries[0];
	assert_int_equal(fst_lg_entry->id, entry->id);
	assert_ptr_equal(fst_lg_entry, entry);

	entry = imd_cursor_next(&cursor);
	assert_non_null(entry);

	snd_lg_entry = &r->entries[1];
	assert_int_equal(snd_lg_entry->id, entry->id);
	assert_ptr_equal(snd_lg_entry, entry);

	entry = imd_cursor_next(&cursor);
	assert_non_null(entry);

	r = imd.sm.r;
	fst_sm_entry = &r->entries[0];
	assert_int_equal(fst_sm_entry->id, entry->id);
	assert_ptr_equal(fst_sm_entry, entry);

	entry = imd_cursor_next(&cursor);
	assert_null(entry);
}

int main(void)
{
	const struct CMUnitTest tests[] = {
		cmocka_unit_test(test_imd_handle_init),
		cmocka_unit_test(test_imd_handle_init_partial_recovery),
		cmocka_unit_test(test_imd_create_empty),
		cmocka_unit_test(test_imd_create_tiered_empty),
		cmocka_unit_test(test_imd_recover),
		cmocka_unit_test(test_imd_limit_size),
		cmocka_unit_test(test_imd_lockdown),
		cmocka_unit_test(test_imd_region_used),
		cmocka_unit_test(test_imd_entry_add),
		cmocka_unit_test(test_imd_entry_find),
		cmocka_unit_test(test_imd_entry_find_or_add),
		cmocka_unit_test(test_imd_entry_size),
		cmocka_unit_test(test_imd_entry_at),
		cmocka_unit_test(test_imd_entry_id),
		cmocka_unit_test(test_imd_entry_remove),
		cmocka_unit_test(test_imd_cursor_init),
		cmocka_unit_test(test_imd_cursor_next),
	};

	return cb_run_group_tests(tests, NULL, NULL);
}