Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
/* SPDX-License-Identifier: GPL-2.0-only */

/*
 * This is a ramstage driver for the Intel Management Engine found in the
 * 6-series chipset.  It handles the required boot-time messages over the
 * MMIO-based Management Engine Interface to tell the ME that the BIOS is
 * finished with POST.  Additional messages are defined for debug but are
 * not used unless the console loglevel is high enough.
 */

#include <acpi/acpi.h>
#include <device/mmio.h>
#include <device/pci_ops.h>
#include <console/console.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <device/pci_def.h>
#include <string.h>
#include <delay.h>
#include <elog.h>
#include <stdlib.h>

#include "chip.h"
#include "me.h"
#include "pch.h"

#include <vendorcode/google/chromeos/chromeos.h>

/* Path that the BIOS should take based on ME state */
static const char *const me_bios_path_values[] = {
	[ME_NORMAL_BIOS_PATH]		= "Normal",
	[ME_S3WAKE_BIOS_PATH]		= "S3 Wake",
	[ME_ERROR_BIOS_PATH]		= "Error",
	[ME_RECOVERY_BIOS_PATH]		= "Recovery",
	[ME_DISABLE_BIOS_PATH]		= "Disable",
	[ME_FIRMWARE_UPDATE_BIOS_PATH]	= "Firmware Update",
};

/* MMIO base address for MEI interface */
static u8 *mei_base_address;

static void mei_dump(u32 dword, int offset, const char *type)
{
	union mei_csr csr;

	if (!CONFIG(DEBUG_INTEL_ME))
		return;

	printk(BIOS_SPEW, "%-9s[%02x] : ", type, offset);

	switch (offset) {
	case MEI_H_CSR:
	case MEI_ME_CSR_HA:
		csr.raw = dword;
		printk(BIOS_SPEW, "cbd=%u cbrp=%02u cbwp=%02u ready=%u "
		       "reset=%u ig=%u is=%u ie=%u\n", csr.buffer_depth,
		       csr.buffer_read_ptr, csr.buffer_write_ptr,
		       csr.ready, csr.reset, csr.interrupt_generate,
		       csr.interrupt_status, csr.interrupt_enable);
		break;
	case MEI_ME_CB_RW:
	case MEI_H_CB_WW:
		printk(BIOS_SPEW, "CB: 0x%08x\n", dword);
		break;
	default:
		printk(BIOS_SPEW, "0x%08x\n", offset);
		break;
	}
}

/*
 * ME/MEI access helpers using memcpy to avoid aliasing.
 */

static inline union mei_csr read_host_csr(void)
{
	union mei_csr csr = { .raw = read32(mei_base_address + MEI_H_CSR) };
	mei_dump(csr.raw, MEI_H_CSR, "READ");
	return csr;
}

static inline void write_host_csr(union mei_csr csr)
{
	write32(mei_base_address + MEI_H_CSR, csr.raw);
	mei_dump(csr.raw, MEI_H_CSR, "WRITE");
}

static inline union mei_csr read_me_csr(void)
{
	union mei_csr csr = { .raw = read32(mei_base_address + MEI_ME_CSR_HA) };
	mei_dump(csr.raw, MEI_ME_CSR_HA, "READ");
	return csr;
}

static inline void write_cb(u32 dword)
{
	write32(mei_base_address + MEI_H_CB_WW, dword);
	mei_dump(dword, MEI_H_CB_WW, "WRITE");
}

static inline u32 read_cb(void)
{
	u32 dword = read32(mei_base_address + MEI_ME_CB_RW);
	mei_dump(dword, MEI_ME_CB_RW, "READ");
	return dword;
}

/* Wait for ME ready bit to be asserted */
static int mei_wait_for_me_ready(void)
{
	union mei_csr me;
	unsigned int try = ME_RETRY;

	while (try--) {
		me = read_me_csr();
		if (me.ready)
			return 0;
		udelay(ME_DELAY);
	}

	printk(BIOS_ERR, "ME: failed to become ready\n");
	return -1;
}

static void mei_reset(void)
{
	union mei_csr host;

	if (mei_wait_for_me_ready() < 0)
		return;

	/* Reset host and ME circular buffers for next message */
	host = read_host_csr();
	host.reset = 1;
	host.interrupt_generate = 1;
	write_host_csr(host);

	if (mei_wait_for_me_ready() < 0)
		return;

	/* Re-init and indicate host is ready */
	host = read_host_csr();
	host.interrupt_generate = 1;
	host.ready = 1;
	host.reset = 0;
	write_host_csr(host);
}

static int mei_send_packet(union mei_header *mei, void *req_data)
{
	union mei_csr host;
	unsigned int ndata, n;
	u32 *data;

	/* Number of dwords to write */
	ndata = mei->length >> 2;

	/* Pad non-dword aligned request message length */
	if (mei->length & 3)
		ndata++;
	if (!ndata) {
		printk(BIOS_DEBUG, "ME: request has no data\n");
		return -1;
	}
	ndata++; /* Add MEI header */

	/*
	 * Make sure there is still room left in the circular buffer.
	 * Reset the buffer pointers if the requested message will not fit.
	 */
	host = read_host_csr();
	if ((host.buffer_depth - host.buffer_write_ptr) < ndata) {
		printk(BIOS_ERR, "ME: circular buffer full, resetting...\n");
		mei_reset();
		host = read_host_csr();
	}

	/* Ensure the requested length will fit in the circular buffer. */
	if ((host.buffer_depth - host.buffer_write_ptr) < ndata) {
		printk(BIOS_ERR, "ME: message (%u) too large for buffer (%u)\n",
		       ndata + 2, host.buffer_depth);
		return -1;
	}

	/* Write MEI header */
	write_cb(mei->raw);
	ndata--;

	/* Write message data */
	data = req_data;
	for (n = 0; n < ndata; ++n)
		write_cb(*data++);

	/* Generate interrupt to the ME */
	host = read_host_csr();
	host.interrupt_generate = 1;
	write_host_csr(host);

	/* Make sure ME is ready after sending request data */
	return mei_wait_for_me_ready();
}

static int mei_send_data(u8 me_address, u8 host_address,
			 void *req_data, int req_bytes)
{
	union mei_header header = {
		.client_address = me_address,
		.host_address = host_address,
	};
	union mei_csr host;
	int current = 0;
	u8 *req_ptr = req_data;

	while (!header.is_complete) {
		int remain = req_bytes - current;
		int buf_len;

		host = read_host_csr();
		buf_len = host.buffer_depth - host.buffer_write_ptr;

		if (buf_len > remain) {
			/* Send all remaining data as final message */
			header.length = req_bytes - current;
			header.is_complete = 1;
		} else {
			/* Send as much data as the buffer can hold */
			header.length = buf_len;
		}

		mei_send_packet(&header, req_ptr);

		req_ptr += header.length;
		current += header.length;
	}

	return 0;
}

static int mei_send_header(u8 me_address, u8 host_address,
			   void *header, int header_len, int complete)
{
	union mei_header mei = {
		.client_address = me_address,
		.host_address   = host_address,
		.length         = header_len,
		.is_complete    = complete,
	};
	return mei_send_packet(&mei, header);
}

static int mei_recv_msg(void *header, int header_bytes,
			void *rsp_data, int rsp_bytes)
{
	union mei_header mei_rsp;
	union mei_csr me, host;
	unsigned int ndata, n;
	unsigned int expected;
	u32 *data;

	/* Total number of dwords to read from circular buffer */
	expected = (rsp_bytes + sizeof(mei_rsp) + header_bytes) >> 2;
	if (rsp_bytes & 3)
		expected++;

	if (mei_wait_for_me_ready() < 0)
		return -1;

	/*
	 * The interrupt status bit does not appear to indicate that the
	 * message has actually been received.  Instead we wait until the
	 * expected number of dwords are present in the circular buffer.
	 */
	for (n = ME_RETRY; n; --n) {
		me = read_me_csr();
		if ((me.buffer_write_ptr - me.buffer_read_ptr) >= expected)
			break;
		udelay(ME_DELAY);
	}
	if (!n) {
		printk(BIOS_ERR, "ME: timeout waiting for data: expected "
		       "%u, available %u\n", expected,
		       me.buffer_write_ptr - me.buffer_read_ptr);
		return -1;
	}

	/* Read and verify MEI response header from the ME */
	mei_rsp.raw = read_cb();
	if (!mei_rsp.is_complete) {
		printk(BIOS_ERR, "ME: response is not complete\n");
		return -1;
	}

	/* Handle non-dword responses and expect at least the header */
	ndata = mei_rsp.length >> 2;
	if (mei_rsp.length & 3)
		ndata++;
	if (ndata != (expected - 1)) {
		printk(BIOS_ERR, "ME: response is missing data %d != %d\n",
		       ndata, (expected - 1));
		return -1;
	}

	/* Read response header from the ME */
	data = header;
	for (n = 0; n < (header_bytes >> 2); ++n)
		*data++ = read_cb();
	ndata -= header_bytes >> 2;

	/* Make sure caller passed a buffer with enough space */
	if (ndata != (rsp_bytes >> 2)) {
		printk(BIOS_ERR, "ME: not enough room in response buffer: "
		       "%u != %u\n", ndata, rsp_bytes >> 2);
		return -1;
	}

	/* Read response data from the circular buffer */
	data = rsp_data;
	for (n = 0; n < ndata; ++n)
		*data++ = read_cb();

	/* Tell the ME that we have consumed the response */
	host = read_host_csr();
	host.interrupt_status = 1;
	host.interrupt_generate = 1;
	write_host_csr(host);

	return mei_wait_for_me_ready();
}

static inline int mei_sendrecv_mkhi(struct mkhi_header *mkhi,
				    void *req_data, int req_bytes,
				    void *rsp_data, int rsp_bytes)
{
	struct mkhi_header mkhi_rsp;

	/* Send header */
	if (mei_send_header(MEI_ADDRESS_MKHI, MEI_HOST_ADDRESS,
			    mkhi, sizeof(*mkhi), req_bytes ? 0 : 1) < 0)
		return -1;

	/* Send data if available */
	if (req_bytes && mei_send_data(MEI_ADDRESS_MKHI, MEI_HOST_ADDRESS,
				     req_data, req_bytes) < 0)
		return -1;

	/* Return now if no response expected */
	if (!rsp_bytes)
		return 0;

	/* Read header and data */
	if (mei_recv_msg(&mkhi_rsp, sizeof(mkhi_rsp),
			 rsp_data, rsp_bytes) < 0)
		return -1;

	if (!mkhi_rsp.is_response ||
	    mkhi->group_id != mkhi_rsp.group_id ||
	    mkhi->command != mkhi_rsp.command) {
		printk(BIOS_ERR, "ME: invalid response, group %u ?= %u,"
		       "command %u ?= %u, is_response %u\n", mkhi->group_id,
		       mkhi_rsp.group_id, mkhi->command, mkhi_rsp.command,
		       mkhi_rsp.is_response);
		return -1;
	}

	return 0;
}

static inline int mei_sendrecv_icc(struct icc_header *icc,
				   void *req_data, int req_bytes,
				   void *rsp_data, int rsp_bytes)
{
	struct icc_header icc_rsp;

	/* Send header */
	if (mei_send_header(MEI_ADDRESS_ICC, MEI_HOST_ADDRESS,
			    icc, sizeof(*icc), req_bytes ? 0 : 1) < 0)
		return -1;

	/* Send data if available */
	if (req_bytes && mei_send_data(MEI_ADDRESS_ICC, MEI_HOST_ADDRESS,
				       req_data, req_bytes) < 0)
		return -1;

	/* Read header and data, if needed */
	if (rsp_bytes && mei_recv_msg(&icc_rsp, sizeof(icc_rsp),
				      rsp_data, rsp_bytes) < 0)
		return -1;

	return 0;
}

/*
 * mbp give up routine. This path is taken if hfs.mpb_rdy is 0 or the read
 * state machine on the BIOS end doesn't match the ME's state machine.
 */
static void intel_me_mbp_give_up(struct device *dev)
{
	union mei_csr csr;

	pci_write_config32(dev, PCI_ME_H_GS2, PCI_ME_MBP_GIVE_UP);

	csr = read_host_csr();
	csr.reset = 1;
	csr.interrupt_generate = 1;
	write_host_csr(csr);
}

/*
 * mbp clear routine. This will wait for the ME to indicate that
 * the MBP has been read and cleared.
 */
static void intel_me_mbp_clear(struct device *dev)
{
	int count;
	union me_hfs2 hfs2;

	/* Wait for the mbp_cleared indicator */
	for (count = ME_RETRY; count > 0; --count) {
		hfs2.raw = pci_read_config32(dev, PCI_ME_HFS2);
		if (hfs2.mbp_cleared)
			break;
		udelay(ME_DELAY);
	}

	if (count == 0) {
		printk(BIOS_WARNING, "ME: Timeout waiting for mbp_cleared\n");
		intel_me_mbp_give_up(dev);
	} else {
		printk(BIOS_INFO, "ME: MBP cleared\n");
	}
}

static void me_print_fw_version(struct mbp_fw_version_name *vers_name)
{
	if (!vers_name) {
		printk(BIOS_ERR, "ME: mbp missing version report\n");
		return;
	}

	printk(BIOS_DEBUG, "ME: found version %d.%d.%d.%d\n",
	       vers_name->major_version, vers_name->minor_version,
	       vers_name->hotfix_version, vers_name->build_version);
}

static inline void print_cap(const char *name, int state)
{
	printk(BIOS_DEBUG, "ME Capability: %-41s : %sabled\n",
	       name, state ? " en" : "dis");
}

/* Get ME Firmware Capabilities */
static int mkhi_get_fwcaps(struct mbp_mefwcaps *cap)
{
	u32 rule_id = 0;
	struct me_fwcaps cap_msg;
	struct mkhi_header mkhi = {
		.group_id       = MKHI_GROUP_ID_FWCAPS,
		.command        = MKHI_FWCAPS_GET_RULE,
	};

	/* Send request and wait for response */
	if (mei_sendrecv_mkhi(&mkhi, &rule_id, sizeof(u32),
			      &cap_msg, sizeof(cap_msg)) < 0) {
		printk(BIOS_ERR, "ME: GET FWCAPS message failed\n");
		return -1;
	}
	*cap = cap_msg.caps_sku;
	return 0;
}

/* Get ME Firmware Capabilities */
static void me_print_fwcaps(struct mbp_mefwcaps *cap)
{
	struct mbp_mefwcaps local_caps;
	if (!cap) {
		cap = &local_caps;
		printk(BIOS_ERR, "ME: mbp missing fwcaps report\n");
		if (mkhi_get_fwcaps(cap))
			return;
	}

	print_cap("Full Network manageability", cap->full_net);
	print_cap("Regular Network manageability", cap->std_net);
	print_cap("Manageability", cap->manageability);
	print_cap("IntelR Anti-Theft (AT)", cap->intel_at);
	print_cap("IntelR Capability Licensing Service (CLS)", cap->intel_cls);
	print_cap("IntelR Power Sharing Technology (MPC)", cap->intel_mpc);
	print_cap("ICC Over Clocking", cap->icc_over_clocking);
	print_cap("Protected Audio Video Path (PAVP)", cap->pavp);
	print_cap("IPV6", cap->ipv6);
	print_cap("KVM Remote Control (KVM)", cap->kvm);
	print_cap("Outbreak Containment Heuristic (OCH)", cap->och);
	print_cap("Virtual LAN (VLAN)", cap->vlan);
	print_cap("TLS", cap->tls);
	print_cap("Wireless LAN (WLAN)", cap->wlan);
}

/* Send END OF POST message to the ME */
static int mkhi_end_of_post(void)
{
	struct mkhi_header mkhi = {
		.group_id	= MKHI_GROUP_ID_GEN,
		.command	= MKHI_END_OF_POST,
	};
	u32 eop_ack;

	/* Send request and wait for response */
	printk(BIOS_NOTICE, "ME: %s\n", __func__);
	if (mei_sendrecv_mkhi(&mkhi, NULL, 0, &eop_ack, sizeof(eop_ack)) < 0) {
		printk(BIOS_ERR, "ME: END OF POST message failed\n");
		return -1;
	}

	printk(BIOS_INFO, "ME: END OF POST message successful (%d)\n", eop_ack);
	return 0;
}

void intel_me_finalize(struct device *dev)
{
	union me_hfs hfs;
	u32 reg32;

	reg32 = pci_read_config32(dev, PCI_BASE_ADDRESS_0);
	mei_base_address = (u8 *)(uintptr_t)(reg32 & ~PCI_BASE_ADDRESS_MEM_ATTR_MASK);

	/* S3 path will have hidden this device already */
	if (!mei_base_address || mei_base_address == (u8 *)0xfffffff0)
		return;

	/* Wait for ME MBP Cleared indicator */
	intel_me_mbp_clear(dev);

	/* Make sure ME is in a mode that expects EOP */
	hfs.raw = pci_read_config32(dev, PCI_ME_HFS);

	/* Abort and leave device alone if not normal mode */
	if (hfs.fpt_bad ||
	    hfs.working_state != ME_HFS_CWS_NORMAL ||
	    hfs.operation_mode != ME_HFS_MODE_NORMAL)
		return;

	/* Try to send EOP command so ME stops accepting other commands */
	mkhi_end_of_post();

	if (!CONFIG(DISABLE_ME_PCI))
		return;

	/* Make sure IO is disabled */
	pci_and_config16(dev, PCI_COMMAND,
			 ~(PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | PCI_COMMAND_IO));

	/* Hide the PCI device */
	RCBA32_OR(FD2, PCH_DISABLE_MEI1);
}

static int me_icc_set_clock_enables(u32 mask)
{
	struct icc_clock_enables_msg clk = {
		.clock_enables	= 0, /* Turn off specified clocks */
		.clock_mask	= mask,
		.no_response	= 1, /* Do not expect response */
	};
	struct icc_header icc = {
		.api_version	= ICC_API_VERSION_LYNXPOINT,
		.icc_command	= ICC_SET_CLOCK_ENABLES,
		.length		= sizeof(clk),
	};

	/* Send request and wait for response */
	if (mei_sendrecv_icc(&icc, &clk, sizeof(clk), NULL, 0) < 0) {
		printk(BIOS_ERR, "ME: ICC SET CLOCK ENABLES message failed\n");
		return -1;
	}
	printk(BIOS_INFO, "ME: ICC SET CLOCK ENABLES 0x%08x\n", mask);
	return 0;
}

/* Determine the path that we should take based on ME status */
static enum me_bios_path intel_me_path(struct device *dev)
{
	enum me_bios_path path = ME_DISABLE_BIOS_PATH;
	union me_hfs hfs = { .raw = pci_read_config32(dev, PCI_ME_HFS) };
	union me_hfs2 hfs2 = { .raw = pci_read_config32(dev, PCI_ME_HFS2) };

	/* Check and dump status */
	intel_me_status(hfs, hfs2);

	/* Check Current Working State */
	switch (hfs.working_state) {
	case ME_HFS_CWS_NORMAL:
		path = ME_NORMAL_BIOS_PATH;
		break;
	case ME_HFS_CWS_REC:
		path = ME_RECOVERY_BIOS_PATH;
		break;
	default:
		path = ME_DISABLE_BIOS_PATH;
		break;
	}

	/* Check Current Operation Mode */
	switch (hfs.operation_mode) {
	case ME_HFS_MODE_NORMAL:
		break;
	case ME_HFS_MODE_DEBUG:
	case ME_HFS_MODE_DIS:
	case ME_HFS_MODE_OVER_JMPR:
	case ME_HFS_MODE_OVER_MEI:
	default:
		path = ME_DISABLE_BIOS_PATH;
		break;
	}

	/* Check for any error code and valid firmware and MBP */
	if (hfs.error_code || hfs.fpt_bad)
		path = ME_ERROR_BIOS_PATH;

	/* Check if the MBP is ready */
	if (!hfs2.mbp_rdy) {
		printk(BIOS_CRIT, "%s: mbp is not ready!\n",
		       __func__);
		path = ME_ERROR_BIOS_PATH;
	}

	if (CONFIG(ELOG) && path != ME_NORMAL_BIOS_PATH) {
		struct elog_event_data_me_extended data = {
			.current_working_state = hfs.working_state,
			.operation_state       = hfs.operation_state,
			.operation_mode        = hfs.operation_mode,
			.error_code            = hfs.error_code,
			.progress_code         = hfs2.progress_code,
			.current_pmevent       = hfs2.current_pmevent,
			.current_state         = hfs2.current_state,
		};
		elog_add_event_byte(ELOG_TYPE_MANAGEMENT_ENGINE, path);
		elog_add_event_raw(ELOG_TYPE_MANAGEMENT_ENGINE_EXT,
				   &data, sizeof(data));
	}

	return path;
}

/* Prepare ME for MEI messages */
static int intel_mei_setup(struct device *dev)
{
	struct resource *res;
	union mei_csr host;

	/* Find the MMIO base for the ME interface */
	res = probe_resource(dev, PCI_BASE_ADDRESS_0);
	if (!res || res->base == 0 || res->size == 0) {
		printk(BIOS_DEBUG, "ME: MEI resource not present!\n");
		return -1;
	}
	mei_base_address = res2mmio(res, 0, 0);

	/* Ensure Memory and Bus Master bits are set */
	pci_or_config16(dev, PCI_COMMAND, PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY);

	/* Clean up status for next message */
	host = read_host_csr();
	host.interrupt_generate = 1;
	host.ready = 1;
	host.reset = 0;
	write_host_csr(host);

	return 0;
}

/* Read the Extend register hash of ME firmware */
static int intel_me_extend_valid(struct device *dev)
{
	union me_heres status = { .raw = pci_read_config32(dev, PCI_ME_HERES) };
	u32 extend[8] = {0};
	int i, count = 0;

	if (!status.extend_feature_present) {
		printk(BIOS_ERR, "ME: Extend Feature not present\n");
		return -1;
	}

	if (!status.extend_reg_valid) {
		printk(BIOS_ERR, "ME: Extend Register not valid\n");
		return -1;
	}

	switch (status.extend_reg_algorithm) {
	case PCI_ME_EXT_SHA1:
		count = 5;
		printk(BIOS_DEBUG, "ME: Extend SHA-1: ");
		break;
	case PCI_ME_EXT_SHA256:
		count = 8;
		printk(BIOS_DEBUG, "ME: Extend SHA-256: ");
		break;
	default:
		printk(BIOS_ERR, "ME: Extend Algorithm %d unknown\n",
		       status.extend_reg_algorithm);
		return -1;
	}

	for (i = 0; i < count; ++i) {
		extend[i] = pci_read_config32(dev, PCI_ME_HER(i));
		printk(BIOS_DEBUG, "%08x", extend[i]);
	}
	printk(BIOS_DEBUG, "\n");

	/* Save hash in NVS for the OS to verify */
	if (CONFIG(CHROMEOS_NVS))
		chromeos_set_me_hash(extend, count);

	return 0;
}

static u32 me_to_host_words_pending(void)
{
	union mei_csr me = read_me_csr();
	if (!me.ready)
		return 0;
	return (me.buffer_write_ptr - me.buffer_read_ptr) &
		(me.buffer_depth - 1);
}

struct mbp_payload {
	union mbp_header header;
	u32 data[0];
};

/*
 * Read and print ME MBP data
 *
 * Return -1 to indicate a problem (give up)
 * Return 0 to indicate success (send LOCK+EOP)
 */
static int intel_me_read_mbp(struct me_bios_payload *mbp_data, struct device *dev)
{
	union mbp_header mbp_hdr;
	u32 me2host_pending;
	union mei_csr host;
	union me_hfs2 hfs2 = { .raw = pci_read_config32(dev, PCI_ME_HFS2) };
	struct mbp_payload *mbp;
	int i;

	if (!hfs2.mbp_rdy) {
		printk(BIOS_ERR, "ME: MBP not ready\n");
		goto mbp_failure;
	}

	me2host_pending = me_to_host_words_pending();
	if (!me2host_pending) {
		printk(BIOS_ERR, "ME: no mbp data!\n");
		goto mbp_failure;
	}

	/* we know for sure that at least the header is there */
	mbp_hdr.raw = read_cb();

	if ((mbp_hdr.num_entries > (mbp_hdr.mbp_size / 2)) ||
	    (me2host_pending < mbp_hdr.mbp_size)) {
		printk(BIOS_ERR, "ME: mbp of %d entries, total size %d words"
		       " buffer contains %d words\n",
		       mbp_hdr.num_entries, mbp_hdr.mbp_size,
		       me2host_pending);
		goto mbp_failure;
	}
	mbp = malloc(mbp_hdr.mbp_size * sizeof(u32));
	if (!mbp)
		goto mbp_failure;

	mbp->header = mbp_hdr;
	me2host_pending--;

	i = 0;
	while (i != me2host_pending) {
		mbp->data[i] = read_cb();
		i++;
	}

	/* Signal to the ME that the host has finished reading the MBP. */
	host = read_host_csr();
	host.interrupt_generate = 1;
	write_host_csr(host);

	/* Dump out the MBP contents. */
	if (CONFIG_DEFAULT_CONSOLE_LOGLEVEL >= BIOS_DEBUG) {
		printk(BIOS_INFO, "ME MBP: Header: items: %d, size dw: %d\n",
		       mbp->header.num_entries, mbp->header.mbp_size);
		if (CONFIG(DEBUG_INTEL_ME)) {
			for (i = 0; i < mbp->header.mbp_size - 1; i++) {
				printk(BIOS_INFO, "ME MBP: %04x: 0x%08x\n", i, mbp->data[i]);
			}
		}
	}

	#define ASSIGN_FIELD_PTR(field_,val_) \
		{ \
		mbp_data->field_ = (typeof(mbp_data->field_))(void *)val_; \
		break; \
		}
	/* Setup the pointers in the me_bios_payload structure. */
	for (i = 0; i < mbp->header.mbp_size - 1;) {
		struct mbp_item_header *item = (void *)&mbp->data[i];

		switch (MBP_MAKE_IDENT(item->app_id, item->item_id)) {
		case MBP_IDENT(KERNEL, FW_VER):
			ASSIGN_FIELD_PTR(fw_version_name, &mbp->data[i+1]);

		case MBP_IDENT(ICC, PROFILE):
			ASSIGN_FIELD_PTR(icc_profile, &mbp->data[i+1]);

		case MBP_IDENT(INTEL_AT, STATE):
			ASSIGN_FIELD_PTR(at_state, &mbp->data[i+1]);

		case MBP_IDENT(KERNEL, FW_CAP):
			ASSIGN_FIELD_PTR(fw_capabilities, &mbp->data[i+1]);

		case MBP_IDENT(KERNEL, ROM_BIST):
			ASSIGN_FIELD_PTR(rom_bist_data, &mbp->data[i+1]);

		case MBP_IDENT(KERNEL, PLAT_KEY):
			ASSIGN_FIELD_PTR(platform_key, &mbp->data[i+1]);

		case MBP_IDENT(KERNEL, FW_TYPE):
			ASSIGN_FIELD_PTR(fw_plat_type, &mbp->data[i+1]);

		case MBP_IDENT(KERNEL, MFS_FAILURE):
			ASSIGN_FIELD_PTR(mfsintegrity, &mbp->data[i+1]);

		case MBP_IDENT(KERNEL, PLAT_TIME):
			ASSIGN_FIELD_PTR(plat_time, &mbp->data[i+1]);

		case MBP_IDENT(NFC, SUPPORT_DATA):
			ASSIGN_FIELD_PTR(nfc_data, &mbp->data[i+1]);

		default:
			printk(BIOS_ERR, "ME MBP: unknown item 0x%x @ "
			       "dw offset 0x%x\n", mbp->data[i], i);
			break;
		}
		i += item->length;
	}
	#undef ASSIGN_FIELD_PTR

	return 0;

mbp_failure:
	intel_me_mbp_give_up(dev);
	return -1;
}

/* Check whether ME is present and do basic init */
static void intel_me_init(struct device *dev)
{
	struct southbridge_intel_lynxpoint_config *config = dev->chip_info;
	enum me_bios_path path = intel_me_path(dev);
	struct me_bios_payload mbp_data;

	/* Do initial setup and determine the BIOS path */
	printk(BIOS_NOTICE, "ME: BIOS path: %s\n", me_bios_path_values[path]);

	if (path == ME_NORMAL_BIOS_PATH) {
		/* Validate the extend register */
		intel_me_extend_valid(dev);
	}

	memset(&mbp_data, 0, sizeof(mbp_data));

	/*
	 * According to the ME9 BWG, BIOS is required to fetch MBP data in
	 * all boot flows except S3 Resume.
	 */

	/* Prepare MEI MMIO interface */
	if (intel_mei_setup(dev) < 0)
		return;

	if (intel_me_read_mbp(&mbp_data, dev))
		return;

	if (CONFIG_DEFAULT_CONSOLE_LOGLEVEL >= BIOS_DEBUG) {
		me_print_fw_version(mbp_data.fw_version_name);

		if (CONFIG(DEBUG_INTEL_ME))
			me_print_fwcaps(mbp_data.fw_capabilities);

		if (mbp_data.plat_time) {
			printk(BIOS_DEBUG, "ME: Wake Event to ME Reset:      %u ms\n",
			       mbp_data.plat_time->wake_event_mrst_time_ms);
			printk(BIOS_DEBUG, "ME: ME Reset to Platform Reset:  %u ms\n",
			       mbp_data.plat_time->mrst_pltrst_time_ms);
			printk(BIOS_DEBUG, "ME: Platform Reset to CPU Reset: %u ms\n",
			       mbp_data.plat_time->pltrst_cpurst_time_ms);
		}
	}

	/* Set clock enables according to devicetree */
	if (config && config->icc_clock_disable)
		me_icc_set_clock_enables(config->icc_clock_disable);

	/*
	 * Leave the ME unlocked. It will be locked later.
	 */
}

static void intel_me_enable(struct device *dev)
{
	/* Avoid talking to the device in S3 path */
	if (acpi_is_wakeup_s3() && CONFIG(DISABLE_ME_PCI)) {
		dev->enabled = 0;
		pch_disable_devfn(dev);
	}
}

static struct device_operations device_ops = {
	.read_resources		= pci_dev_read_resources,
	.set_resources		= pci_dev_set_resources,
	.enable_resources	= pci_dev_enable_resources,
	.enable			= intel_me_enable,
	.init			= intel_me_init,
	.final			= intel_me_finalize,
	.ops_pci		= &pci_dev_ops_pci,
};

static const unsigned short pci_device_ids[] = {
	PCI_DID_INTEL_LPT_H_MEI,
	PCI_DID_INTEL_LPT_LP_MEI,
	0
};

static const struct pci_driver intel_me __pci_driver = {
	.ops     = &device_ops,
	.vendor  = PCI_VID_INTEL,
	.devices = pci_device_ids,
};