Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 | /* SPDX-License-Identifier: GPL-2.0-only */
/*
* Originally based on the Linux kernel (arch/i386/kernel/pci-pc.c).
*/
#include <console/console.h>
#include <device/device.h>
#include <device/pci_def.h>
#include <device/pci_ids.h>
#include <post.h>
#include <stdlib.h>
#include <string.h>
#include <smp/spinlock.h>
#include <timer.h>
/** Pointer to the last device */
extern struct device *last_dev;
/** Linked list of free resources */
struct resource *free_resources = NULL;
/* Disable a PCI device based on bus, device and function. */
void devfn_disable(const struct bus *bus, unsigned int devfn)
{
struct device *dev = pcidev_path_behind(bus, devfn);
if (dev)
dev->enabled = 0;
}
/**
* Initialize all chips of statically known devices.
*
* Will be called before bus enumeration to initialize chips stated in the
* device tree.
*/
void dev_initialize_chips(void)
{
const struct device *dev;
for (dev = all_devices; dev; dev = dev->next) {
/* Initialize chip if we haven't yet. */
if (dev->chip_ops && dev->chip_ops->init &&
!dev->chip_ops->initialized) {
post_log_path(dev);
dev->chip_ops->init(dev->chip_info);
dev->chip_ops->initialized = 1;
}
}
post_log_clear();
}
/**
* Finalize all chips of statically known devices.
*
* This is the last call before calling the payload. This is a good place
* to lock registers or other final cleanup.
*/
void dev_finalize_chips(void)
{
const struct device *dev;
for (dev = all_devices; dev; dev = dev->next) {
/* Initialize chip if we haven't yet. */
if (dev->chip_ops && dev->chip_ops->final &&
!dev->chip_ops->finalized) {
dev->chip_ops->final(dev->chip_info);
dev->chip_ops->finalized = 1;
}
}
}
DECLARE_SPIN_LOCK(dev_lock)
/**
* Allocate a new device structure.
*
* Allocate a new device structure and attach it to the device tree as a
* child of the parent bus.
*
* @param parent Parent bus the newly created device should be attached to.
* @param path Path to the device to be created.
* @return Pointer to the newly created device structure.
*
* @see device_path
*/
static struct device *__alloc_dev(struct bus *parent, struct device_path *path)
{
struct device *dev, *child;
/* Find the last child of our parent. */
for (child = parent->children; child && child->sibling; /* */)
child = child->sibling;
dev = malloc(sizeof(*dev));
if (dev == 0)
die("alloc_dev(): out of memory.\n");
memset(dev, 0, sizeof(*dev));
memcpy(&dev->path, path, sizeof(*path));
/* By default devices are enabled. */
dev->enabled = 1;
/* Add the new device to the list of children of the bus. */
dev->bus = parent;
if (child)
child->sibling = dev;
else
parent->children = dev;
/* Append a new device to the global device list.
* The list is used to find devices once everything is set up.
*/
last_dev->next = dev;
last_dev = dev;
return dev;
}
struct device *alloc_dev(struct bus *parent, struct device_path *path)
{
struct device *dev;
spin_lock(&dev_lock);
dev = __alloc_dev(parent, path);
spin_unlock(&dev_lock);
return dev;
}
/**
* See if a device structure already exists and if not allocate it.
*
* @param parent The bus to find the device on.
* @param path The relative path from the bus to the appropriate device.
* @return Pointer to a device structure for the device on bus at path.
*/
struct device *alloc_find_dev(struct bus *parent, struct device_path *path)
{
struct device *child;
spin_lock(&dev_lock);
child = find_dev_path(parent, path);
if (!child)
child = __alloc_dev(parent, path);
spin_unlock(&dev_lock);
return child;
}
/**
* Read the resources on all devices of a given bus.
*
* @param bus Bus to read the resources on.
*/
static void read_resources(struct bus *bus)
{
struct device *curdev;
printk(BIOS_SPEW, "%s %s bus %d link: %d\n", dev_path(bus->dev),
__func__, bus->secondary, bus->link_num);
/* Walk through all devices and find which resources they need. */
for (curdev = bus->children; curdev; curdev = curdev->sibling) {
struct bus *link;
if (!curdev->enabled)
continue;
if (!curdev->ops || !curdev->ops->read_resources) {
if (curdev->path.type != DEVICE_PATH_APIC)
printk(BIOS_ERR, "%s missing %s\n",
dev_path(curdev), __func__);
continue;
}
post_log_path(curdev);
curdev->ops->read_resources(curdev);
/* Read in the resources behind the current device's links. */
for (link = curdev->link_list; link; link = link->next)
read_resources(link);
}
post_log_clear();
printk(BIOS_SPEW, "%s %s bus %d link: %d done\n",
dev_path(bus->dev), __func__, bus->secondary, bus->link_num);
}
struct device *vga_pri = NULL;
static void set_vga_bridge_bits(void)
{
/*
* FIXME: Modify set_vga_bridge() so it is less PCI-centric!
* This function knows too much about PCI stuff, it should be just
* an iterator/visitor.
*/
/* FIXME: Handle the VGA palette snooping. */
struct device *dev, *vga, *vga_onboard;
struct bus *bus;
bus = 0;
vga = 0;
vga_onboard = 0;
dev = NULL;
while ((dev = dev_find_class(PCI_CLASS_DISPLAY_VGA << 8, dev))) {
if (!dev->enabled)
continue;
printk(BIOS_DEBUG, "found VGA at %s\n", dev_path(dev));
if (dev->bus->no_vga16) {
printk(BIOS_WARNING,
"A bridge on the path doesn't support 16-bit VGA decoding!");
}
if (dev->on_mainboard)
vga_onboard = dev;
else
vga = dev;
/* It isn't safe to enable all VGA cards. */
dev->command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_IO);
}
if (!vga)
vga = vga_onboard;
if (CONFIG(ONBOARD_VGA_IS_PRIMARY) && vga_onboard)
vga = vga_onboard;
/* If we prefer plugin VGA over chipset VGA, the chipset might
want to know. */
if (!CONFIG(ONBOARD_VGA_IS_PRIMARY) && (vga != vga_onboard) &&
vga_onboard && vga_onboard->ops && vga_onboard->ops->vga_disable) {
printk(BIOS_DEBUG, "Use plugin graphics over integrated.\n");
vga_onboard->ops->vga_disable(vga_onboard);
}
if (vga) {
/* VGA is first add-on card or the only onboard VGA. */
printk(BIOS_DEBUG, "Setting up VGA for %s\n", dev_path(vga));
/* All legacy VGA cards have MEM & I/O space registers. */
vga->command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_IO);
vga_pri = vga;
bus = vga->bus;
}
/* Now walk up the bridges setting the VGA enable. */
while (bus) {
printk(BIOS_DEBUG, "Setting PCI_BRIDGE_CTL_VGA for bridge %s\n",
dev_path(bus->dev));
bus->bridge_ctrl |= PCI_BRIDGE_CTL_VGA | PCI_BRIDGE_CTL_VGA16;
bus = (bus == bus->dev->bus) ? 0 : bus->dev->bus;
}
}
/**
* Assign the computed resources to the devices on the bus.
*
* Use the device specific set_resources() method to store the computed
* resources to hardware. For bridge devices, the set_resources() method
* has to recurse into every down stream buses.
*
* Mutual recursion:
* assign_resources() -> device_operation::set_resources()
* device_operation::set_resources() -> assign_resources()
*
* @param bus Pointer to the structure for this bus.
*/
void assign_resources(struct bus *bus)
{
struct device *curdev;
printk(BIOS_SPEW, "%s %s, bus %d link: %d\n",
dev_path(bus->dev), __func__, bus->secondary, bus->link_num);
for (curdev = bus->children; curdev; curdev = curdev->sibling) {
if (!curdev->enabled || !curdev->resource_list)
continue;
if (!curdev->ops || !curdev->ops->set_resources) {
printk(BIOS_ERR, "%s missing set_resources\n",
dev_path(curdev));
continue;
}
post_log_path(curdev);
curdev->ops->set_resources(curdev);
}
post_log_clear();
printk(BIOS_SPEW, "%s %s, bus %d link: %d done\n",
dev_path(bus->dev), __func__, bus->secondary, bus->link_num);
}
/**
* Enable the resources for devices on a link.
*
* Enable resources of the device by calling the device specific
* enable_resources() method.
*
* The parent's resources should be enabled first to avoid having enabling
* order problem. This is done by calling the parent's enable_resources()
* method before its children's enable_resources() methods.
*
* @param link The link whose devices' resources are to be enabled.
*/
static void enable_resources(struct bus *link)
{
struct device *dev;
struct bus *c_link;
for (dev = link->children; dev; dev = dev->sibling) {
if (dev->enabled && dev->ops && dev->ops->enable_resources) {
post_log_path(dev);
dev->ops->enable_resources(dev);
}
}
for (dev = link->children; dev; dev = dev->sibling) {
for (c_link = dev->link_list; c_link; c_link = c_link->next)
enable_resources(c_link);
}
post_log_clear();
}
/**
* Reset all of the devices on a bus and clear the bus's reset_needed flag.
*
* @param bus Pointer to the bus structure.
* @return 1 if the bus was successfully reset, 0 otherwise.
*/
int reset_bus(struct bus *bus)
{
if (bus && bus->dev && bus->dev->ops && bus->dev->ops->reset_bus) {
bus->dev->ops->reset_bus(bus);
bus->reset_needed = 0;
return 1;
}
return 0;
}
/**
* Scan for devices on a bus.
*
* If there are bridges on the bus, recursively scan the buses behind the
* bridges. If the setting up and tuning of the bus causes a reset to be
* required, reset the bus and scan it again.
*
* @param busdev Pointer to the bus device.
*/
static void scan_bus(struct device *busdev)
{
int do_scan_bus;
struct stopwatch sw;
long scan_time;
if (!busdev->enabled)
return;
printk(BIOS_DEBUG, "%s scanning...\n", dev_path(busdev));
post_log_path(busdev);
stopwatch_init(&sw);
do_scan_bus = 1;
while (do_scan_bus) {
struct bus *link;
busdev->ops->scan_bus(busdev);
do_scan_bus = 0;
for (link = busdev->link_list; link; link = link->next) {
if (link->reset_needed) {
if (reset_bus(link))
do_scan_bus = 1;
else
busdev->bus->reset_needed = 1;
}
}
}
scan_time = stopwatch_duration_msecs(&sw);
printk(BIOS_DEBUG, "%s: bus %s finished in %ld msecs\n", __func__,
dev_path(busdev), scan_time);
}
void scan_bridges(struct bus *bus)
{
struct device *child;
for (child = bus->children; child; child = child->sibling) {
if (!child->ops || !child->ops->scan_bus)
continue;
scan_bus(child);
}
}
/**
* Determine the existence of devices and extend the device tree.
*
* Most of the devices in the system are listed in the mainboard devicetree.cb
* file. The device structures for these devices are generated at compile
* time by the config tool and are organized into the device tree. This
* function determines if the devices created at compile time actually exist
* in the physical system.
*
* For devices in the physical system but not listed in devicetree.cb,
* the device structures have to be created at run time and attached to the
* device tree.
*
* This function starts from the root device 'dev_root', scans the buses in
* the system recursively, and modifies the device tree according to the
* result of the probe.
*
* This function has no idea how to scan and probe buses and devices at all.
* It depends on the bus/device specific scan_bus() method to do it. The
* scan_bus() method also has to create the device structure and attach
* it to the device tree.
*/
void dev_enumerate(void)
{
struct device *root;
printk(BIOS_INFO, "Enumerating buses...\n");
root = &dev_root;
show_all_devs(BIOS_SPEW, "Before device enumeration.");
printk(BIOS_SPEW, "Compare with tree...\n");
show_devs_tree(root, BIOS_SPEW, 0);
if (root->chip_ops && root->chip_ops->enable_dev)
root->chip_ops->enable_dev(root);
if (!root->ops || !root->ops->scan_bus) {
printk(BIOS_ERR, "dev_root missing scan_bus operation");
return;
}
scan_bus(root);
post_log_clear();
printk(BIOS_INFO, "done\n");
}
/**
* Configure devices on the devices tree.
*
* Starting at the root of the device tree, travel it recursively in two
* passes. In the first pass, we compute and allocate resources (ranges)
* required by each device. In the second pass, the resources ranges are
* relocated to their final position and stored to the hardware.
*
* I/O resources grow upward. MEM resources grow downward.
*
* Since the assignment is hierarchical we set the values into the dev_root
* struct.
*/
void dev_configure(void)
{
const struct device *root;
set_vga_bridge_bits();
printk(BIOS_INFO, "Allocating resources...\n");
root = &dev_root;
/*
* Each domain should create resources which contain the entire address
* space for IO, MEM, and PREFMEM resources in the domain. The
* allocation of device resources will be done from this address space.
*/
/* Read the resources for the entire tree. */
printk(BIOS_INFO, "Reading resources...\n");
read_resources(root->link_list);
printk(BIOS_INFO, "Done reading resources.\n");
print_resource_tree(root, BIOS_SPEW, "After reading.");
allocate_resources(root);
assign_resources(root->link_list);
printk(BIOS_INFO, "Done setting resources.\n");
print_resource_tree(root, BIOS_SPEW, "After assigning values.");
printk(BIOS_INFO, "Done allocating resources.\n");
}
/**
* Enable devices on the device tree.
*
* Starting at the root, walk the tree and enable all devices/bridges by
* calling the device's enable_resources() method.
*/
void dev_enable(void)
{
struct bus *link;
printk(BIOS_INFO, "Enabling resources...\n");
/* Now enable everything. */
for (link = dev_root.link_list; link; link = link->next)
enable_resources(link);
printk(BIOS_INFO, "done.\n");
}
/**
* Initialize a specific device.
*
* The parent should be initialized first to avoid having an ordering problem.
* This is done by calling the parent's init() method before its children's
* init() methods.
*
* @param dev The device to be initialized.
*/
static void init_dev(struct device *dev)
{
if (!dev->enabled)
return;
if (!dev->initialized && dev->ops && dev->ops->init) {
struct stopwatch sw;
long init_time;
if (dev->path.type == DEVICE_PATH_I2C) {
printk(BIOS_DEBUG, "smbus: %s[%d]->",
dev_path(dev->bus->dev), dev->bus->link_num);
}
printk(BIOS_DEBUG, "%s init\n", dev_path(dev));
stopwatch_init(&sw);
dev->initialized = 1;
dev->ops->init(dev);
init_time = stopwatch_duration_msecs(&sw);
printk(BIOS_DEBUG, "%s init finished in %ld msecs\n", dev_path(dev),
init_time);
}
}
static void init_link(struct bus *link)
{
struct device *dev;
struct bus *c_link;
for (dev = link->children; dev; dev = dev->sibling) {
post_code(POST_BS_DEV_INIT);
post_log_path(dev);
init_dev(dev);
}
for (dev = link->children; dev; dev = dev->sibling) {
for (c_link = dev->link_list; c_link; c_link = c_link->next)
init_link(c_link);
}
}
/**
* Initialize all devices in the global device tree.
*
* Starting at the root device, call the device's init() method to do
* device-specific setup, then call each child's init() method.
*/
void dev_initialize(void)
{
struct bus *link;
printk(BIOS_INFO, "Initializing devices...\n");
/* First call the mainboard init. */
init_dev(&dev_root);
/* Now initialize everything. */
for (link = dev_root.link_list; link; link = link->next)
init_link(link);
post_log_clear();
printk(BIOS_INFO, "Devices initialized\n");
show_all_devs(BIOS_SPEW, "After init.");
}
/**
* Finalize a specific device.
*
* The parent should be finalized first to avoid having an ordering problem.
* This is done by calling the parent's final() method before its childrens'
* final() methods.
*
* @param dev The device to be initialized.
*/
static void final_dev(struct device *dev)
{
if (!dev->enabled)
return;
if (dev->ops && dev->ops->final) {
printk(BIOS_DEBUG, "%s final\n", dev_path(dev));
dev->ops->final(dev);
}
}
static void final_link(struct bus *link)
{
struct device *dev;
struct bus *c_link;
for (dev = link->children; dev; dev = dev->sibling)
final_dev(dev);
for (dev = link->children; dev; dev = dev->sibling) {
for (c_link = dev->link_list; c_link; c_link = c_link->next)
final_link(c_link);
}
}
/**
* Finalize all devices in the global device tree.
*
* Starting at the root device, call the device's final() method to do
* device-specific cleanup, then call each child's final() method.
*/
void dev_finalize(void)
{
struct bus *link;
printk(BIOS_INFO, "Finalize devices...\n");
/* First call the mainboard finalize. */
final_dev(&dev_root);
/* Now finalize everything. */
for (link = dev_root.link_list; link; link = link->next)
final_link(link);
printk(BIOS_INFO, "Devices finalized\n");
}
|